
Dementia is an emerging global public health challenge 
for our generation: over 35 million people are affected 
by this condition worldwide and the global estimated 
financial cost of dementia in 2010 was in excess of 
US$600 billion1. The most prevalent cause of dementia 
is Alzheimer disease (AD), which is a fatal neurode-
generative disorder that is characterized by progressive 
cognitive and functional impairment and memory loss. 
Most cases of AD are late-onset and sporadic, with no 
proven evidence for a Mendelian pattern of inheritance. 
The prevalence of the disease increases with life expec-
tancy, and it affects more than one-third of people over 
the age of 90 (REF. 2). There are no treatments to cure 
or halt the progression of AD; the currently approved 
pharmacotherapies provide only modest and transient 
symptomatic benefit. Validated biomarkers for early 
diagnosis of the disease also do not exist.

The amyloid cascade hypothesis has been the major 
pathogenic concept in the field of AD research for 
the past few decades. It states that the pathological 
sequence of events leading to AD are the accumula-
tion of the amyloid‑β peptide (Aβ), followed by the 
deposition of neurofibrillary tangles (NFTs), which 
are composed of the microtubule-associated protein 
tau, and the onset of synaptic and neuronal dysfunc-
tion and loss3. AD pathology is also characterized by 
an inflammatory response, which is primarily driven 
by the brain’s intrinsic myeloid cells (known as micro-
glia) and escalates with disease progression. For more 
than a decade, there have been data indicating that the 
immune system may have a role in AD; however, the 

importance of inflammation to AD pathogenesis has 
only very recently been appreciated, and inflamma-
tion is now thought to contribute to and exacerbate AD 
pathology4–12. We propose that a better understanding of 
the role of inflammation in the pathogenesis of AD will 
deliver new therapeutic targets and attractive biomarkers 
for this disease that are relevant for diagnostics.

The overall aim of this article is to review our cur-
rent knowledge of the contribution of the immune sys-
tem to AD pathogenesis. We first summarize the current 
consensus view of AD pathogenesis and then integrate 
immune actions into the existing knowledge of patho-
genic events in AD. Finally, we refine the concept of neu-
roinflammation in AD by specifying the reactive cells, 
their products and their signalling pathways that are 
associated with the disease, without any preconception 
about whether these immune actions are deleterious or 
helpful. These novel immune-related insights broaden 
our overall understanding of AD pathogenesis and may 
ultimately lead to novel therapeutic targets for controlling 
the disease process.

The amyloid cascade hypothesis
The two primary pathological hallmarks of AD are Aβ 
plaques, which are extracellular deposits of Aβ (which 
is derived from the β-amyloid precursor protein (APP)), 
and NFTs, which are primarily composed of hyperphos-
phorylated tau. Although the pathophysiology of AD is 
still unknown, much evidence indicates that Aβ and 
tau species make an important contribution to disease 
progression. Indeed, according to the amyloid cascade 

Myeloid cells
The subset of leukocytes that 
are not lymphocytes. They 
include granulocytes, 
monocytes, macrophages and 
dendritic cells.
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Familial AD
An uncommon form of AD that 
usually occurs before the age 
of 65 and is inherited in an 
autosomal dominant fashion.

hypothesis, Aβ accumulation and deposition in the 
brain — resulting from the aberrant processing of APP 
or dysfunctional clearance of the Aβ peptide — are the 
initiating events in AD3 (FIG. 1a).

Several lines of evidence support the amyloid cas-
cade hypothesis. Individuals with Down syndrome 
have a third copy (or part of a third copy) of chromo-
some 21, on which APP is located, and such individu-
als frequently develop the typical histopathological and 
clinical signs of AD even at young ages, thus linking the 
manifestation of AD in older individuals to APP process-
ing. Furthermore, mutations in APP have been found 
in families with a history of early-onset AD. Indeed, all 
known mutations linked to familial AD affect the gen-
eration or aggregation propensity of Aβ (note that most 
cases of familial AD are caused by dominant mutations 
in the genes that encode the presenilin proteins, which 

form part of the γ‑secretase complex that processes 
APP (FIG. 1a)). Finally, APP variants that protect against 
AD have been reported13. Thus, the genetic evidence 
strongly supports the hypothesis that abnormal pro-
duction or accumulation of Aβ is a pathogenic event 
in both familial AD and sporadic AD3,14. The fact that 
transgenic mice harbouring human APP mutations 
develop Aβ pathology that is similar to the pathology 
that is observed in patients with AD, and that cell lines 
carrying APP mutations overexpress Aβ (for reviews, see 
REFS 15,16), further corroborates this idea.

Importantly, various (soluble and insoluble) species 
and aggregation states of Aβ coexist, including monomers, 
oligomers, protofibrils, fibrils and Aβ plaques, and recent 
insights into their biology show that they probably have 
varying levels of pathogenic impact. This is not only of 
therapeutic but also of diagnostic significance, as different 

Figure 1 | Pathological events in Alzheimer disease and microglial priming.  a | The increase in production and/or 
reduced clearance of amyloid‑β (Aβ), which is derived from the β-amyloid precursor protein (APP), is throught to be a 
central event in Alzheimer disease (AD). Cleavage of APP occurs either in a non-amyloidogenic (‘physiological’) or in an 
amyloidogenic (‘pathological’) fashion; only the latter results in the production of amyloid-β (Aβ). In the 
non-amyloidogenic pathway, APP is cleaved first by α‑secretase and then by γ‑secretase, whereas in the amyloidogenic 
pathway, γ‑secretase cleavage of APP is preceded by β‑secretase cleavage, releasing Aβ into the extracellular 
compartment16. The cleavage site used by γ‑secretase in the amyloidogenic pathway determines whether the 
predominant Aβ40 or the more aggregation-prone and neurotoxic Aβ42 species of the peptide is generated. Aβ 
monomers may then go on to form oligomers or other arrays, depending on mutations in the Aβ coding region of APP 
and post-translational modifications16,204. The arrow thickness indicates the likelihood of conversion of Aβ species or 
arrays. b | The presence of Aβ (as well as other pathological protein deposits, alterations in the CNS, systemic or local 
inflammation, and mutations in genes encoding innate immune molecules) can ‘prime’ microglial cells; that is, Aβ makes 
these cells susceptible to a secondary stimulus and/or promotes their activation. Priming results in various functional 
microglia phenotypes (indicated by different colours), presumably accompanied with no or only minor morphological 
alterations and/or no (major) cell-surface marker differences. In AD, Aβ sustains chronic activation of primed microglia 
(due to the peptide’s accumulation), which results in a constant production of inflammatory cytokines and chemokines 
by these cells; in turn, the cytokines and chemokines maintain activation of the primed cells. This process results in a 
vicious circle, which ultimately impairs microglia (although this impairment is reversible for some time); moreover, it 
affects surrounding CNS resident cells (astrocytes, oligodendrocytes and neurons), possibly aggravating tau pathology 
(denoted by the dashed line and a question mark), and finally causing neurodegeneration and neuron loss. If these 
processes perpetuate over a prolonged period, it forces microglia into a senescent, ‘burn-out’-like (dystrophic) 
phenotype, which is thought to be irreversible.
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Microglia activation
A term used to describe a 
functional activation of 
microglial cells, for example, in 
response to a defined stimulus 
in pathophysiological settings 
or during development; 
however, it is often used to 
describe a change in the 
morphological appearance of 
microglia that does not 
necessarily correspond to the 
functional status of these cells. 
Reactive microglia is a term 
used when microglia respond 
to pathological changes and 
deviate from the normal 
steady-state.

Encephalitides
Acute inflammatory diseases of 
the brain, typically consisting 
of tissue-invading leukocytes 
(mainly T cells). 

Aβ species are, at least by today’s conventional diagnostic 
measures, not equally well detectable. Consequently, Aβ 
plaques — which are typically used as a neuropathological 
measure in the evaluation of AD brains — are only one of 
many ways in which Aβ presents, and may not always and 
necessarily correlate with the clinical signs of AD such as 
cognitive decline16,17, whereas other, pathogenically more 
relevant Aβ species remain undetected.

The overwhelming evidence for the pathogenic rel-
evance of Aβ — or at least of certain species thereof — in 
AD has motivated the design of interventional strategies 
to clear excess Aβ, prevent its formation or remove it. 
This particular focus may explain, at least in part, why 
AD‑associated alterations other than those at the cen-
tre of the APP or tau processing machinery have been 
largely ignored by researchers and have been considered 
pathogenically irrelevant. This explains also why immune 
system-related events in AD have only recently become 
a central topic of pathogenic and, ultimately, possible 
therapeutic relevance. It has been proposed that the 
original amyloid cascade hypothesis should be slightly 
modified to incorporate a more central role for tau in 
the pathogenesis of AD18, and further modification is 
justified to incorporate a role for neuroinflammation. 

Does neuroinflammation occur in AD?
Neuroinflammation was assumed to occur only at late 
to end stages of AD and possibly to represent merely an 
epiphenomenon. In particular, glial cell activation was 
thought to accompany but not significantly contribute to 
amyloid pathology (for reviews, see REFS 11,19). However, 
the spectrum of glial cell actions and other immune-
related changes in AD had not been fully dissected, and 
is still far from being well understood.

Recently, preclinical, genetic and bioinformatic 
data have shown that activation of the immune sys-
tem accompanies AD pathology and contributes to the 
pathogenesis of this disease20. As has often been the case 
in AD research, genetics has led the way in forging these 
links. The identification of associations between AD 
and mutations in genes encoding triggering receptor 
expressed on myeloid cells 2 (TREM2)21,22 and myeloid 
cell surface antigen CD33 (REF. 23) proved to be con-
ceptually transformational, as it was the first time that 
the link between immune alterations and AD patho-
genesis was supported beyond the purely descriptive 
level. The discovery of risk variants of genes encoding 
immune system molecules prompted a reassessment of 
previously reported findings that levels of inflammatory 
cytokines, chemokines and other immune mediators are 
increased in the tissues and body fluids of individuals 
with AD or prodromal forms of this disease24,25.

Recent studies have not only identified various novel 
alterations in immune system molecules, pathways and 
genes in AD but have shifted our understanding of the 
timing of immune system changes in the course of this 
disease. According to the amyloid cascade hypothesis3, 
immune-system activation — ultimately mediated mainly 
by glial cells such as microglia and astrocytes — follows 
Aβ deposition. However, correlative analyses of the clini-
cal symptoms that precede AD (that is, mild cognitive 

impairment (MCI)) and the presence of inflammatory 
changes (for example, in the cerebrospinal fluid (CSF)) 
have indicated a much earlier involvement of the immune 
system24,25. Moreover, one study26 showed that systemic 
immune challenge by the viral mimic polyriboinosinic–
polyribocytidilic acid ‘sporadically’ triggered and drove 
the development of AD‑like neuropathology comprising 
Aβ plaques and tau aggregation, microglia activation and 
reactive gliosis in wild-type mice, suggesting that immune 
actions can precede AD‑like pathology and are sufficient 
to cause it. The modulation of the neurodegenerative 
disease course by specific immune molecules in pre-
clinical experimental approaches and the upregulation 
of inflammatory genes in arrays on tissues derived from 
patients with degenerative CNS diseases also point to a 
relationship between inflammation and neurodegenera-
tive disorders (including AD), and implicate immune 
actions early in the pathogenic process5–7,9–11,27–31. These 
observations imply that immune processes may — at 
least at a given time point — drive AD pathology inde-
pendently of Aβ deposition and sustain increased Aβ 
levels, thus exacerbating pathology and culminating in 
a vicious, pathophysiological cycle (FIG. 1b).

Neuroinflammatory responses can be induced by 
both CNS-intrinsic factors and systemic influences (fac-
tors from outside the CNS). Systemic inflammation29,32 
may result from chronic diseases — such as psoriasis, 
which recently has been shown to be associated with 
an increased risk of developing dementia (including 
AD‑linked dementia)33,34 — or from obesity and (obesity-
associated) type 2 diabetes, in which CNS inflammation 
and microglia activation have been described as impor-
tant components35,36. CNS-intrinsic neuroinflammatory 
conditions (for example, traumatic brain injury37 and 
degeneration of the locus coeruleus38) have also been 
found to facilitate the development of AD pathology.

Refining neuroinflammation
The immune system activation that is observed in AD 
is often labelled ‘neuroinflammation’. We know that 
there is virtually no disorder of the CNS in which the 
immune system — or parts thereof — is not involved. It 
has become widely accepted that pathological changes 
within all tissues are sensed by the immune system. In 
particular, tissue-resident immune cells sense altera-
tions in the tissue through so-called damage-associated 
molecular patterns (DAMPs)39, which in AD comprise 
misfolded proteins and amyloid (such as Aβ plaques)11. 
Traditionally defined neuroinflammatory diseases (such 
as multiple sclerosis (MS) or encephalitides) used to be 
distinguished from neurodegenerative diseases (such 
as AD or Parkinson disease (PD)) by virtue of the kind 
of inflammation they evoked. For example, tissue 
invasion of blood-derived leukocytes of the adaptive 
immune system — namely, T and B lymphocytes — is 
a prominent feature of MS and encephalitides, but as 
far as we know it is not a prominent feature of AD or 
PD12,40–43. Indeed, the inflammatory reaction observed 
in AD is driven primarily (but perhaps not entirely) 
by CNS-resident immune cells —namely, microglia, 
perivascular myeloid cells44 and other reactive elements 
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such as astrocytes — and reflects by and large the tissue 
reaction to pathological events that occur in the disease 
course. Irrespective of the ongoing discussion about 
whether neuroinflammation has not only a pathogenically 
relevant role but also a disease-initiating role in neuro-
degenerative disorders, the contribution of microglia and 
astroglia in degenerative diseases of the CNS such as AD 
is held to be a naturally occuring and concomitant part 
of AD pathology, be it benign, reparative or detrimental. 
By contrast, immune activation in traditional neuroin-
flammatory diseases (such as MS and encephalitides) is 
widely accepted to be disease-promoting.

We propose that the feature that distinguishes tradi-
tionally defined neuroinflammatory diseases from neu-
rodegenerative disorders is the nature of inflammation; 
more precisely, whether the pathological process is driven 
by cardinal adaptive immune cells (as seen in encepha-
litides), or CNS-resident and/or potentially blood-derived 
innate immune cells. Thus, it might be more useful to dis-
criminate diseases of the CNS as being characterized by an 
innate immune element or by an adaptive immune com-
ponent (FIG. 2). The translational implication of this dis-
tinction will be that therapeutic development can focus on 

the respective type of immune system contribution that 
is active in the disease, and it will be irrelevant or even 
insufficient for patients or translationally minded scien-
tists to separate CNS disorders with immune involvement 
per se from those that lack neuroinflammation. With 
respect to the translation of treatments, it will also not 
matter whether the immune contribution is primary and 
disease-causing (such as in encephalitides), or secondary 
and involved in maintaining or exacerbating disease (such 
as in AD). 

The following points could be used to contrast AD 
with MS at the pathogenic level. First, the genetics of MS 
suggest that T cells have a role in this disease45, whereas 
recent genome-wide association studies (GWASs) of 
sporadic AD cases have found associations between AD 
and other genes that are involved in innate immunity, 
as indicated by AD‑linked mutations in the microglial 
or myeloid genes encoding TREM2 (REFS 21,22), CD33 
(REFS 23,46), complement receptor 1 (CR1)47,48, mye-
loid cell-expressed membrane-spanning 4‑domains 
subfamily A member 6A (MS4A6A) and putative 
membrane-spanning 4‑domains subfamily A member 
4E (MS4A4E)49,50. Second, the disease process in MS 
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Figure 2 | Distinguishing neuroinflammation: innate immune-driven versus adaptive immune-driven neuro
inflammation.  Neuroinflammation in various CNS disorders can be differentiated by the nature of inflammation; that is, 
diseases may be classified according to if CNS-resident and/or potentially blood-derived innate immune cells are the 
major pathogenic component (as in neurodegenerative diseases such as Alzheimer disease) (a), or if predominantly 
adaptive immune cells (B and T lymphocytes) drive the pathological process (as seen in encephalitides or multiple sclerosis 
(MS)) (b). The main contribution — apart from astrocytes — of the innate immune system in neurodegenerative diseases 
occurs within the CNS through resident microglia and perivascular macrophages, whereas the involvement of other 
blood-derived myeloid cells such as dendritic cells and monocytes appear to have no major impact on the course of 
neurodegeneration. Whether — and if so, to what extent — monocytes are recruited from the periphery to the CNS in the 
course of the disease is not entirely clear (denoted by the dashed arrow and a question mark) (a). Traditionally defined 
neuroinflammatory diseases such as MS are primarily driven by cells of the adaptive immune system such as T and B 
lymphocytes; various subtypes of myeloid cells have, however, also important pathogenic implications; blood-derived 
monocytes represent in fact the most numerous infiltrate into the CNS where they transform into monocyte-derived 
inflammatory phagocytes (macrophages or dendritic cells) and are thought to mediate much of the tissue damage 
observed (denoted by the thick arrow). As in neurodegenerative diseases, astrocytes and microglia also react to pathology, 
although it is not clear whether the type of response is similar to what happens in neurodegeneration (b).
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Quantitative trait loci
Stretches of DNA that contain 
or are linked to the genes that 
underlie a quantitative trait. 
Quantitative traits refer to 
certain phenotypes.

begins with T cell autoimmunity, as indicated by find-
ings in informative animal models51, whereas the disease 
process in AD may begin with abnormal protein pro-
cessing and, in its early stages, involve aberrant innate 
immunity11. Third, the expression of quantitative trait loci 
that are implicated in AD are expressed in monocytes, 
whereas those that are involved in MS are mainly found 
in T lymphocytes52.

Activation of the immune system in AD can act at 
least as pacemaker, perpetuating and accelerating the 
course of the disease; although at present it is not gen-
erally thought to be the trigger of the disease process, it 
cannot be excluded that immune actions, at least in part, 
may also have a detrimental role in initiating the disease 
process4,7,10–12,26,28,29,31,53.

Neuroinflammatory mechanisms in AD
Microglia promote neuroinflammation in AD. Microglia 
are CNS-resident myeloid cells of embryonic haemato
poietic origin. Like most tissue macrophages, micro-
glia survey the brain for pathogens and support CNS 
homeostasis and plasticity; for example, by guarding and 
remodelling synapses (for a review, see REF. 54). Microglia 
are equipped to sense so‑called danger signals, such as 
protein aggregates in AD, and to respond to changes in 
neuronal health by adopting a set of morphological and 
functional attributes; such cells are termed ‘reactive’ or 
‘primed’ (for a review, see REF. 4).

Among all non-neuronal CNS cells, microglia are 
the most intimately associated with the tissue changes 
that are observed in AD: in brain tissue taken at autopsy 
from individuals with AD, macrophages derived from 
microglia and, possibly, from infiltrating monocytes sur-
round Aβ plaques, and the morphology of parenchymal 
microglia indicates that these cells are responding to 
challenge.

Soluble Aβ oligomers and Aβ fibrils can bind to vari-
ous receptors that are expressed by microglia, including 
CD14, CD36, CD47, α6β1 integrin, class A scavenger 
receptor, receptor for advanced glycosylation end products 
(RAGE) and toll-like receptors (TLRs)55–62. Binding of Aβ 
to, for example, CD36 or TLR4 results in the production 
of inflammatory cytokines and chemokines in vitro59,63. 
In vivo, interleukin‑1 (IL‑1) (REF. 64), IL‑6, granulocyte-
macrophage colony-stimulating factor (GM‑CSF)65, IL‑12 
and IL‑23 (REF. 66), and tumour necrosis factor (TNF)67 
— all markers of inflammation — are detectable or upreg-
ulated in animal models of AD or in the brains or CSF 
from humans with AD (for details, see REF. 4). In studies in 
transgenic mouse models of AD, TNF release by microglia 
in response to Aβ was triggered by an interaction of CD40 
with CD40L or by TLR4 engagement68–70.

Besides the production of inflammatory mediators 
upon binding of Aβ to various microglia receptors, 
Aβ has been shown to be cleared by microglia in vitro 
through receptor-mediated phagocytosis and degrada-
tion. However, the relevance of these reports is uncer-
tain, as it remains unclear whether microglia themselves 
phagocytose Aβ fibrils in a pathophysiological AD 
setting in vivo (for a review, see REF. 4). Nevertheless, 
microglia possess the machinery to degrade the more 

‘digestible’ (and pathogenically more relevant71) soluble 
Aβ species via extracellular proteases such as neprilysin 
and insulin-degrading enzyme (IDE) (for a review, see 
REF. 72).

Aside from a few visionary investigators43,73,74, most 
researchers consider it axiomatic that the amoeboid mor-
phology of microglia in AD equates to a toxic microglial 
phenotype that is accompanied by the production of solu-
ble inflammatory factors, and this morphology is often 
habitually — but erroneously — interpreted as a sign of 
microglial ‘activation’. Remarkably, however, there is now 
strong evidence for a progressive, Aβ‑dependent impair-
ment of microglial function, as shown by a decrease in 
the phagocytosis of beads and in a reduced capacity to 
extend processes towards a tissue lesion in a mouse model 
of AD75. These findings are in line with another study 
showing that microglia from transgenic AD mice had 
reductions in the levels of Aβ‑binding scavenger receptor 
and Aβ‑degrading enzyme76. Importantly, efficient phago-
cytosis has recently been shown to involve a component 
of the autophagy pathway, namely beclin 1, the levels of 
which were found to be markedly reduced in microglia 
derived from people with AD77. The idea that microglial 
impairment might represent the functional correlate of 
their amoeboid phenotype in AD carries considerable 
relevance for understanding AD pathogenesis, especially 
in light of the finding that inefficient clearance of Aβ — 
including that mediated through microglial proteases — is 
a major pathogenic factor in sporadic AD78. It is therefore 
noteworthy but not surprising that transient depletion 
(using suicide-gene technology) of microglia that have 
acquired a dysfunctional phenotype has no impact on 
Aβ burden in an animal model of AD79.

Microglial impairment might paradoxically be sus-
tained by inflammatory cytokines such as TNF, IL‑1, 
IL‑12 and IL‑23 (REFS 64,66,67). This idea suggests that 
AD pathology could be accelerated through this negative 
feedback loop. Ultimately, prolonged microglia impair-
ment will also be accompanied by a loss of trophic func-
tions and the elimination of protective properties. As the 
microglia-specific deficiency of brain-derived neuro-
trophic factor (BDNF) has recently identified microglia-
produced BDNF to be key for achieving a motor-learning 
task by promoting learning-related synapse formation80, 
a lack of functional microglia providing trophic factors 
such as BDNF may further impact neuronal integrity in 
the course of AD.

Aβ oligomers impair neuronal function in part 
because they can interact with neuronal membranes in a 
receptor-independent fashion81,82. Thus, it is tempting to 
speculate that microglial dysfunction in the early stages 
of AD may also be due to an interaction with such Aβ 
species, as these hydrophobic amyloid moieties can bind 
any cell membrane83 (FIG. 3).

In summary, it is necessary to view the transformed 
microglial cell as being indicative of a loss of tissue 
homeostasis. Because microglia carry out critical physi-
ological tasks in the healthy brain84,85, a phenotypically 
transformed microglial cell should raise suspicions that 
their intrinsic tasks are not being performed efficiently 
and that the loss of microglial integrity may contribute 
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to tissue pathology as readily as do other impaired ele-
ments of the CNS. The idea of neuroinflammation in 
AD therefore goes beyond the degree of mere alterations 
in microglial morphology and instead implies changes 
in this cell’s phenotype and function, and the relevant 
consequences.

Rare structural variants of genes encoding the immune 
receptors TREM2 (REFS 21,22,86,87), CD33 (REFS 23,46) 
and CR1 (REF. 47), all of which are expressed on microglia 
and other myeloid cells, have been found to be associ-
ated with a higher risk of AD. These findings support the 
concept of altered microglial function in AD. As TREM2 
has previously been shown to be involved in regulating 
microglial phagocytosis88,89, it was surprising to learn 
that the chief impact of TREM2 in vivo in various AD 
mouse models is to promote the survival of activated 
microglia and their peripherally derived myeloid coun-
terparts90,91, and to engage these cells with Aβ plaques90–92 
through sensing lipids associated with Aβ accumulation 
and neuronal loss90. Interestingly, a TREM2 deficiency 
in APPPS1 mice, which express mutant forms of human 
APP and presenilin 1 (PS1) (and hence model AD), was 

shown to ameliorate hippocampal Aβ accumulation91, 
whereas 5XFAD mice (an AD‑like mouse model express-
ing human mutant variants of APP and PS1), in which 
Aβ deposition develops less rapidly than in APPPS1 mice, 
showed an increase in hippocampal Aβ in the absence 
of TREM2 (REF. 90). Future studies will need not only to 
address the reasons for the differences in Aβ pathology in 
the various AD‑like mouse models lacking TREM2, but 
also to distinguish between potential differences in phe-
notypes resulting from TREM2 deficiency versus TREM2 
mutations. Accordingly, genetic variation in the gene 
encoding TYRO protein tyrosine kinase-binding protein 
(TYROBP; also known as DAP12) — the TREM2 adap-
tor protein — has been shown to be associated with late-
onset AD20. Together, these findings suggest that impaired 
TREM2 function and, consequently, altered myeloid cell 
(monocyte or microglia) function, have a role in AD 
pathogenesis.

CD33 encodes a cell-surface protein of the sialic acid-
binding Ig‑like lectin (SIGLEC) family93 and provides 
another example of a myeloid-cell- or microglial-cell-
expressed gene in which variants have been associated 

Figure 3 | Dynamic, multifaceted interactions with amyloid‑β mediate microglial phenotypes in Alzheimer 
disease.  In both in vitro and in vivo experiments, microglia exhibit receptor-dependent interactions58,61,205,206 with various 
forms of amyloid‑β (Aβ; from monomers to oligomers, protofibrils, fibrils and plaques) as well as non-receptor mediated 
interactions (particularly with oligomers)81. Aβ species can stimulate changes in microglial function or production of 
inflammatory mediators through signalling receptors207, by inducing production of such mediators by other cells such as 
astrocytes208 and through post-phagocytic processes within microglia, including lysosomal injury, which acidifies the 
cytosol and contributes to activating the NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome149. 
Receptor-mediated interactions between microglia and Aβ monomers do not show evidence for altered microglial 
function aside from induction of a ‘primed’ state, typified by heightened responses to subsequent DAMP 
(damage-associated molecular pattern) or cytokine stimuli. Microglia function, as monitored by motility in response to 
laser lesion and phagocytic activity of latex beads, is severely impaired in APPPS1 Alzheimer disease (AD) mice75, known to 
also exhibit oligomeric Aβ209. This functionally compromised state affects the microglial response to downstream Aβ 
species such as fibrils and plaques, culminating in a morphology and irreversible phenotype that is termed ‘dystrophic’ — 
corresponding to a ‘burn out’ of microglia (see also FIG. 1b). The arrow thickness indicates the likelihood of conversion of 
Aβ species or arrays. 
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Cerebral amyloidosis
This term describes all forms of 
CNS diseases that feature the 
deposition of proteins 
(so‑called proteinopathies).

Hypertrophy
The increase in the volume of 
an organ, tissue or cell.

Apolipoprotein E
(APOE). A class of 
apolipoprotein that is required 
for the catabolism of 
triglyceride-rich lipoprotein 
constituents. In the CNS, APOE 
is generated primarily by 
astrocytes, and transports 
cholesterol to neurons via 
APOE receptors, whereas in 
the periphery, APOE is mainly 
produced by the liver and 
macrophages, and mediates 
cholesterol metabolism.

Neurovascular unit
(NVU). This consists of vascular 
cells such as brain endothelial 
cells, pericytes and vascular 
smooth muscle cells, glial cells 
such as astrocytes, microglia 
and oligodendroglia, and 
neurons. It links neural activity 
to blood flow and controls the 
exchange of biologically 
relevant protein interactions 
between brain and the 
periphery.

with an increased risk of developing AD23,46. One study 
showed that CD33 expression was upregulated on micro-
glia from post-mortem samples of human AD brains, 
and that a CD33 variant, namely the protective CD33 
single-nucleotide polymorphism (SNP) rs3865444, was 
associated with reductions in both CD33 expression 
and insoluble Aβ levels in the AD brain94. By contrast, 
another study found that monocytes derived from car-
riers of this risk genotype showed a decrease in vitro in 
phagocytosis of Aβ fibrils23.

GWAS-based discoveries of alterations in genes that 
regulate innate immune system functions in people 
with AD, along with insights into the contribution of 
the immune system to AD from a variety of experimen-
tal approaches, provide good evidence for a pathogenic 
role of CNS-resident myeloid cells such as microglia 
in the course of the disease. It is thus conceivable that 
mutations in innate immune molecules compromise 
microglia function, similar to the way in which Aβ 
impairs microglial performance over time75; micro-
glia dysfunction, irrespective of whether it is caused 
by genetic alterations or by prolonged exposure to the 
Aβ‑rich AD environment, will ultimately — if not inter-
rupted — culminate in a state of these cells that has been 
termed ‘dystrophic’73,95. In this state, microglia lack their 
beneficial functions and have acquired a detrimental, 
senescent-like phenotype, which could justifiably be 
termed a cellular ‘burn out’ of microglia that resembles 
an irreversible end stage (FIG. 1b).

Myeloid cells other than resident microglia. The CNS 
has a rich complement of non-microglial myeloid cells 
including meningeal and choroid plexus macrophages, 
as well as perivascular macrophages. Of these, perivas-
cular macrophages seem to have a particularly crucial 
role in the physiological removal of Aβ and protection 
from amyloid pathology96,97. Perivascular macrophages 
are, in contrast to microglia, continuously replaced 
from progeny of the circulating monocyte pool during 
adulthood98. Preclinical studies using animal models of 
AD based on amyloid deposition96,97,99,100 have shown 
that all CNS myeloid cells are, in principle, capable of 
promoting Aβ clearance and, thereby, of limiting the 
deposition of vascular amyloid, thus influencing dis-
ease outcome. It remains uncertain whether infiltrating 
myeloid cells — monocyte-derived macrophages that 
typically do not contribute substantially in numerical 
terms to parenchymal macrophages in the course of 
AD100 or in other proteinopathies such as prion dis-
ease101 — can, in principle, modulate AD pathology 
when experimentally instructed to enter the AD brain, 
as reports are not conclusive44.

Astrocytes promote neuroinflammation in AD. 
Astrocytes are CNS-resident cells of neuroectodermal 
origin that can — like microglia — respond to patho-
logical stimuli through reactive gliosis102,103. Also simi-
larly to myeloid cells, astrocytes surround Aβ plaques104, 
and studies using transgenic mice exhibiting cerebral 
amyloidosis105 have shown that their activation occurs 
early in the course of pathogenesis. Although reactive 

astrocytes typically upregulate their expression of glial 
fibrillary acidic protein (GFAP), they do not form ‘glial 
scars’ in the brain of individuals with AD as they do in 
CNS diseases such as MS or in stroke102. In transgenic 
mouse models of AD, astrocytes underwent atrophy 
that preceded the Aβ plaque-related astrogliosis (except 
those astrocytes surrounding plaques, which show 
hypertrophy), and this eventually resulted in deficient 
glutamatergic transmission, possibly contributing to 
the cognitive impairment106,107. Furthermore, reduc-
ing astrocyte activation through a viral vector driving 
the expression of VIVIT, a peptide that interferes with 
the immune or inflammatory calcineurin–nuclear fac-
tor of activated T cells (NFAT) signalling pathway, in 
an Aβ‑overexpressing mouse model of AD ameliorated 
AD‑like pathology108. Several studies have shown that 
reactive astrocytes that are localized near plaques take up 
and degrade Aβ109–111. Furthermore, astrocyte activation 
followed by the release of apolipoprotein E (APOE) from 
astrocytes has been shown to be crucial for the ability 
of microglia to remove fibrillar Aβ in an animal model 
of AD112. Moreover, astrocytes, like microglia, increase 
their expression of Aβ‑degrading enzymes when exposed 
to native Aβ extracts ex vivo113–115. However, the atrophy 
of astrocytes (as shown in a mouse model of AD106,107) 
may also result in a reduced proteolytic clearance of Aβ. 
Hence, AD pathogenesis may entail altered astrocyte 
function, which may be considered an integral part of 
the neuroinflammatory response.

Neuroinflammatory actions of other CNS cells in AD. 
Besides microglia and astrocytes, other CNS-resident 
cells such as endothelial cells, oligodendrocytes 
and neurons can contribute to neuroinflammation. 
Oligodendrocytes and myelin are known targets of 
immune reactions in neurological disorders such as MS. 
Despite the fact that AD research lacks more detailed 
studies in this context, there is evidence for changes in 
oligodendrocytes and myelin abnormalities in AD white 
matter (reviewed in REFS 115–117). As oligodendrocytes 
have been shown to express the complement components 
C1q, C1s, C2, C3, C4, C5, C6, C7, C8 and C9 (REF. 118), 
and complement-activated oligodendrocytes are found 
in various neurodegenerative conditions with a neuroin-
flammatory component including AD119, these cells may 
contribute to neuroinflammation by providing increased 
levels of complement in the AD brain (for details on the 
complement system in AD see REF. 115).

Neurons are equipped with a variety of molecules that 
protect against inflammation, of which fractalkine120,121, 
the complement defense protein CD59 (REFS 122,123) 
and CD200 (REF. 124) have been shown to be decreased 
in pathology-affected regions of the AD brain. Thus, 
neurons can potentially contribute to the neuroinflam-
matory aspect of AD perhaps mainly by reducing their 
expression of inhibitors of inflammation in part due to 
cell death or dysfunction.

Endothelial cells, besides being a key element of 
the neurovascular unit that contributes to the transport 
of Aβ species between the brain and the periphery 
(for a review, see REF. 125), have also been described 
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to influence inflammation in AD. Brain endothelial 
cells produce immune molecules such as IL‑6, IL‑1β 
and CCL2 in vitro upon exposure to Aβ peptides and 
in human AD brains126. Moreover, the vasoconstrictor 
endothelin 1 is upregulated upon Aβ binding to RAGE 
— the latter confers pleiotropic effects in the AD setting 
— which ultimately also regulates vascular inflammation 
in patients with AD127. For a more detailed review on 
endothelial actions in AD, including mechanisms influ-
encing the efflux of amyloid and/or neurotoxic species 
as well as other proteins such as growth factors, and the 
expression of adhesion molecules enabling influx of 
immune cells to the brain, see REFS 125,128,129.

Therapeutic neuroinflammatory AD targets
Which cells should be modulated? To date, most thera-
peutic efforts have been directed towards developing 
purely symptomatic treatments or agents that target 
Aβ or tau; however, the strategy of reducing inflam-
mation in AD has recently attracted more interest 

(for reviews, see REFS 11,130). Based on our current 
knowledge, innate immune cells such as microglia 
and macrophages are the prime targets for modulating 
neuroinflammation.

Resident microglia in AD and other pathological 
conditions have been shown to produce either induc-
ible nitric oxide synthase (NOS2) or arginase131. As 
NOS2 expression was suggestive of M1 and arginase 
production of M2 phenotypes proposed for some tis-
sue macrophages (BOX 1), microglia were categorized 
similarly18,131. However, research into macrophage biol-
ogy over the past 15 years has led to an abandonment of 
the M1 versus M2 concept for macrophages132. Indeed, 
it has been suggested that macrophages should not be 
classified according to arginine metabolism133, at least 
in part because macrophages and microglia commonly 
express both arginase and NOS2. Hence, we propose 
to follow suit and relinquish this framework for micro-
glia. Regardless of how microglial phenotypes may ulti-
mately be classified, these cells produce a large diversity 

Box 1 | M1 and M2 macrophages: the rise and fall of an idea

In recent years, the concept of macrophage polarization has been widely 
applied, both to tissue macrophages and monocyte-derived macrophages, 
largely extrapolating results obtained in vitro to the situation in vivo. The 
concept incorporates two precepts: first, that there is a two-dimensional 
spectrum comprising all macrophage activation states; and, second, that 
the termini of this spectrum can usefully be modelled by inflammatory 
macrophages (termed M1 or classically activated) at one end, and 
reparative (termed M2 or alternatively activated) macrophages at the 
other. This concept has recently been reviewed and reappraised132. This 
paradigm began with classical findings that resistance to infection was 
associated with macrophage activation192. Seminal reports193,194 showed 
that interferon‑γ (IFNγ) and IL‑4 elicited different reactions from 
macrophages in vitro. At the same time, two different subsets of T helper 
(T

H
) cell, producing IFNγ and IL‑4, respectively, were shown to orchestrate 

responses to differing categories of infectious pathogens195. 
It was thus attractive to propose that M1 macrophages versus M2 

macrophages responded to the products of different T cell subsets (IFNγ 
produced by T

H
1 cells versus IL‑4 produced by T

H
2 cells, respectively), and 

that T
H
1 cells and M1 macrophages operated through coordinated 

teamwork, as did T
H
2 cells and M2 macrophages196. By analogy, microglia 

were suggested to adopt M1 or M2 states131 and this idea rapidly gained 

ascendency. Through application of genome-wide transcriptional 
profiling and epigenetics, the molecular mechanisms that govern T cell 
polarization have been identified197–199. However, these same approaches 
were not able to delineate the molecular pathways underlying the 
expected two types of macrophage responses to stimuli200,201. Indeed, the 
more stimuli were studied, the more ‘polarized states’ for macrophages 
were described202. The different expression profiles associated with each 
polarization state stubbornly resisted being aligned along a spectrum 
whose extremes were defined by the M1 and M2 transcriptomes203. 
Ultimately, this leads to the realization that stable subset commitment is 
an authentic attribute of T

H
 cells and is useful for understanding their 

biology. By contrast, mononuclear phagocytes seem to have a 
near-infinite plasticity that lends itself ideally to dealing with an endless 
variety of environmental challenges132. Importantly, if macrophages 
cannot be categorized according to the M1 versus M2 paradigm, then it 
is also time to abandon this constricting strait-jacket in research into the 
functions of microglia. A recent perspective article authored jointly by 
25 senior investigators133 reviewed the history of the concept of 
macrophage activation, proposed a new nomenclature and indicated 
that a simple bipolar scheme is not sufficient. CSF1, macrophage 
colony-stimulating factor 1.
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macrophage-activation 
responses are found to 
IL-4 that are distinct 
from those to IFNγ
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M1 and M2 
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proposed to be 
linked to TH1 and 
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are proposed, based on 
responses to various stimuli 

Cytokines are 
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vitro
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pathways are found to overlap, 
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states are not identifiable
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Network analyses of stimulus-dependent 
human macrophage transcriptomes 
revealed nine distinct states of polariza-
tion. Portrayed in a three-dimensional 
format, these states failed to align along a 
linear spectrum but rather were distrib-
uted as points within an apparent sphere

Call for new view on macrophage 
polarization: “Our opinion is that 
macrophages do not form stable 
subsets but respond to a combina-
tion of factors present in the tissue; 
we have, rather than subsets of 
macrophages, pathways that 
interact to form complex, even 
mixed, phenotypes.”132
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Adaptive immune system
The immune system that forms 
the basis for acquired 
immunity and immunological 
memory and involves T and B 
lymphocytes.

Mast cells
These are resident 
granulocytes of several types 
of tissues containing many 
granules rich in histamine and 
heparin.

Biologicals
Medicinal products that are 
manufactured in or extracted 
from biological sources (they 
may also be termed 
biopharmaceutical or biologic 
medical products); they are 
distinct from chemically 
synthesized pharmaceutical 
products.

NLRP3 inflammasome
Inflammasomes comprise a 
sensor molecule from the 
NOD-like receptor (NLR) family 
or the pyrin and HIN 
domain-containing protein 
(PYHIN) family, the adaptor 
protein ASC and caspase 1. 
The NALP3 inflammasome is 
expressed in myeloid cells, 
senses a wide range of 
aggregated molecules, and 
promotes the maturation of 
the inflammatory cytokines 
interleukin-1 (IL‑1) and IL‑18.

of mediators, some of which may be attractive targets 
for modulating neuroinflammation in AD and thus, 
potentially, for ameliorating the disease course.

Although astrocytes may also seem to be suitable and 
attractive targets in this regard, the current limitations 
in our understanding of astrocyte biology and metho
dological options to modulate these cells restrict the 
potential for astrocyte manipulation in the near future. 
By contrast, cells of the adaptive immune system, such as 
B and T cells, appear not to be significant components of 
the neuroinflammatory reaction in AD according to our 
current knowledge12,40–43, and thus are not major therapeu-
tic targets. Reports of an involvement of other immune 
cells such as mast cells are so far mostly descriptive 
(reviewed in REF. 134) and await experimental confirma-
tion. Nevertheless, a tyrosine kinase inhibitor that inhibits 
mast cell differentiation and degranulation showed some 
benefit as an adjunct therapy to the current standard of 
care in a small Phase II trial in people with AD135.

When should modulation occur? As the phenotypes and 
functional properties of microglia obviously change dur-
ing the course of AD, interventional approaches aimed at 
modulating neuroinflammation crucially depend on when 
and where to interfere. This may explain why despite the 
epidemiological link between the use of non-steroidal 
anti-inflammatory drugs (NSAIDs) and reduced risk 
of developing AD136,137, prospective clinical trials have 
failed to demonstrate a positive effect of traditional non-
selective NSAIDs or of selective cyclooxygenase 2 (COX2) 
inhibitors in the treatment or prevention of AD130,138–141. 
However, in one large prevention trial, participants showed 
cognitive improvement for a prolonged period of time 
after termination of NSAID treatment142; thus, the effec-
tiveness of NSAID as well as of COX2 inhibitor treatment 
in presymptomatic individuals is currently inconclusive130. 
This demonstrates the importance of stringent assessment 
of both the time point (before or after the onset of symp-
toms or biomarker changes) of initiation and the duration 
of anti-inflammatory treatment in AD. Moreover, more-
specific immune actions may need to be targeted that are 
not affected by NSAIDs or COX2 inhibitors.

The lack of success in ameliorating AD by the use of 
broad anti-inflammatory drugs should thus not diminish 
the enthusiasm and efforts for research in this direction, 
as recent insights into pathogenically relevant immune 
actions will enable a more precise targeting of well-defined 
immune pathways and molecules, even when consid-
ering the existing limitations of AD clinical trials that 
suffer from the lack of well-defined outcome measures 
and precise diagnostic assays, and long durations.

Which immune molecules should be targeted? Based 
on preclinical data or findings in AD patients, various 
immune molecules or signalling pathways have been 
found to be promising therapeutic targets both from a 
scientific and a venture capital viewpoint143. Below we 
discuss the most promising or better validated targets 
(aside from those mentioned in previous sections). 
TABLE 1 provides a more-complete summary of potential 
immune targets for AD.

IL‑12 and IL‑23 are both therapeutically attractive 
immune targets for AD, as they have been shown to be 
increased in the CSF of AD and/or MCI patients66,144. 
Moreover, levels of the common subunit of IL‑12 and 
IL‑23, namely p40, were higher in the plasma of MCI 
and AD patients in an unbiased approach performed by 
the Alzheimer’s Disease Neuroimaging Initiative consor-
tium145, IL‑12 gene expression was augmented in post-
mortem brain tissue of individuals with AD compared 
with control individuals8, and polymorphisms of the gene 
encoding the IL‑23 receptor were associated with AD in 
a northern Han Chinese population146. In addition, IL‑12 
and IL‑23 were found to be released by a subpopulation 
of activated CD11c‑positive microglia in a preclinical 
model of AD66. Ablation of IL‑12, IL‑23, p40 or the IL‑12 
receptor β1 (through which both IL‑12 and IL‑23 signal) 
in an Aβ-overexpressing transgenic mouse model of AD 
resulted in a substantial reduction in cerebral Aβ burden. 
Administration of neutralizing p40 antibodies before or 
after the onset of amyloid accumulation in this mouse 
model likewise markedly reduced the AD‑like pathol-
ogy, including cognitive and behavioural changes66. 
Neutralizing p40 — through antibody administration or 
through the use of small interfering RNA — in another 
mouse model of AD had similar effects147. Together, these 
findings point to IL‑12 and IL‑23 signalling as a tangible 
target for interventional approaches in AD130,143,148.

Biologicals that inhibit IL‑12 and/or IL‑23 have under-
gone clinical validation in trials for other diseases and, in 
some cases, have already been approved by the US Food 
and Drug Administration (FDA) (for example, neutral-
izing p40 antibodies for the treatment of psoriasis); this 
means that a drug with a known risk profile specifically 
targeting IL‑12 and IL‑23 is, in principle, available for a 
first clinical trial in patients with AD. Although the non-
CNS (that is, peripheral) actions of IL‑12 and IL‑23 are 
typically mediated via T and natural killer (NK) cells, in 
the AD CNS setting, IL‑12 and IL‑23 seem to act through 
a novel mechanism that is independent from T and NK 
cells66. In this latter scenario, it seems that IL‑12 and IL‑23 
act directly on astrocytes, which express the respective 
receptors66 (FIG. 4). Thus, existing biologicals that inhibit 
IL‑12 and/or IL‑23 would be assumed to be equally 
effective in AD as in IL‑12 and IL‑23 T cell-mediated 
peripheral diseases such as psoriasis, in which blockade 
of the IL‑12–IL‑23 signalling pathway, irrespective of 
the cellular source of origin, is regarded as the crucial 
therapeutic event.

Another attractive approach to modulate immune 
responses in AD centres on the NLRP3 inflammasome 
(NACHT, LRR and PYD domains-containing pro-
tein 3 inflammasome). In vitro, this inflammasome can 
receive an activation signal when Aβ fibrils damage 
lysosomal membranes of microglia, leading to cytosol 
acidification149. NLRP3 is involved in regulating the 
catalytic activity of caspase 1, the enzyme that medi-
ates the cleavage of the precursors of IL‑1β and IL‑18 
into bioactive cytokines. Elevated levels of active cas-
pase 1 have been detected in brain tissue from patients 
with AD and AD mice, whereas mutations in the 
genes encoding NLRP3 or caspase 1 reduced AD‑like 
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pathology in a mouse model of AD, and this was accom-
panied by a change in microglial phenotype150. There 
are currently no FDA-approved drugs that exclusively 
and specifically target NLRP3, but the recent identifica-
tion of a small molecule inhibitor of NLRP3 (REF. 151) 
and of CD36 as a key upstream regulator of NLRP3 
activation60 may circumvent this problem. However, 
in vivo data on the role of CD36 in animal models of 
AD are still lacking. CD36 mediates microglia and 
macrophage responses to Aβ in vitro and in vivo, thus 
playing a key part in the inflammatory events associ-
ated with AD63, without compromising the NLRP3 
inflammasome activity that is required for host defence 
against pathogens. Importantly, however, peroxisome 
proliferator-activated receptor-γ (PPARγ) agonists, 
such as pioglitazone, induce Aβ clearance in a mouse 
model of AD by stimulating microglial uptake of Aβ in 
a CD36‑mediated manner152. This observation suggests 
that downregulating CD36 may reduce inflammation 

but may also diminish the clearance of Aβ — another 
reason why in vivo experiments on CD36 function in 
animal models of AD are required.

In this context, the retinoid bexarotene, which selec-
tively activates retinoid X receptors (RXRs), also needs 
to be mentioned. Bexarotene increased the microglia-
mediated uptake of soluble Aβ in an APOE-dependent 
manner in an AD mouse model, resulting in reduced 
pathology153. Several studies confirmed the effects of bex-
arotene on clearance of soluble Aβ, but some of the initially 
reported effects of bexarotene on AD‑like pathology could 
not be fully reproduced at a quantitative level154–157.

A deficiency in CC chemokine receptor type  2 
(CCR2), which is expressed by monocytes, amplified 
and accelerated mortality in a transgenic mouse model 
of AD96 by impairing the population maintenance of 
perivascular macrophages100, leading to Aβ deposition in 
cerebral vasculature. Whether overexpression of CCR2 
has a positive effect on AD pathology, and thus qualifies 

Table 1 | Attractive immune targets for manipulating AD pathology at various levels of validation

Immune target or 
signalling pathway

Function Therapeutic manipulation Refs

TREM2 or TYROBP Promotes Aβ uptake and/or 
sustains microglia or myeloid cell 
response to Aβ through sensing 
lipids that are associated with Aβ

Unclear whether targets should 
be upregulated or inhibited (to 
date, the collected in vivo data 
have been inconsistent)

20–22,89–92

CD33 Inhibits Aβ phagocytosis Inhibition or downregulation 23,46

CR1 Modulates the effect of APOE ε4 on 
brain fibrillar amyloid burden

Upregulation or activation 47,48

PPARγ or RXR Induces Aβ clearance Upregulation or activation 152,153

NLRP3 (or inflammasome-
associated molecules IL‑1β 
and caspase 1)

Regulates caspase 1 and IL‑1β 
activation, and Aβ clearance

Inhibition or downregulation 150

CD36 Upstream regulator of NLRP3 
activation, and binds Aβ

Presumably inhibition or 
downregulation (absence of 
in vivo data)

60,63

CD14 Co‑receptor (along with TLR4 and 
protein MD2) for DAMPs, including 
Aβ

Inhibition or downregulation 62,207

IL‑12 and/or IL‑23 Part of the Aβ‑driven inflammatory 
response

Inhibition or downregulation 8,66,145–147

IL‑6 Part of the Aβ‑driven inflammatory 
response

Presumably upregulation or 
activation

210,211

TNF–TNFR Part of the Aβ‑driven inflammatory 
response

Presumably inhibition 
(inconsistent data)

212–215

CX3CR1 Enables homeostatic neuronal–
microglia crosstalk

Upregulation or activation 121,158,159

P2X7R Microglial-expressed member of 
purinergic ionotropic receptors

Inhibition or downregulation 216,217

SCARA1 Myeloid cell-expressed scavenger 
receptor for soluble Aβ

Upregulation or activation 160

TGFβ1 Member of the transforming 
growth factor-β family of cytokines

Unclear (overproduction reduces 
Aβ burden; inhibition in myeloid 
cells reduces Aβ burden)

167–170

Aβ, amyloid‑β; AD, Alzheimer disease; APOE, apolipoprotein E; CR1, complement receptor 1; CX3CR1, CX3C chemokine 
receptor 1; DAMPs, damage-associated molecular patterns; IL, interleukin; MD2, NLRP3, NACHT, LRR and PYD 
domains-containing protein 3; PPARγ, peroxisome proliferator-activated receptor-γ; RXR, retinoic acid receptor RXR; SCARA1, 
macrophage scavenger receptor types I and II; TGFβ1, transforming growth factor β1; TLR4, Toll-like receptor 4; TNF, tumour 
necrosis factor; TNFR, TNF receptor; TREM2, triggering receptor expressed on myeloid cells 2; TYROBP, TYRO protein tyrosine 
kinase-binding protein.
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CCR2 to be of potential therapeutic benefit, remains to 
be established. Similarly, modulation of the expression of 
microglial CX3C chemokine receptor 1 (CX3CR1; also 
known as the fractalkine receptor) had positive effects in 
mouse models of amyloid deposition while dramatically 
worsening tau pathology121,158,159. Likewise, macrophage 
scavenger receptor types I and II (SCARA1) has recently 
been shown to be involved in clearing soluble amyloid‑β 
by myeloid cells in vivo and in vitro160, thus offering yet 
another druggable immune target.

Also of interest are studies linking complement, 
microglia and AD pathology161–163. Microglia have a role 
in complement-mediated synaptic pruning164,165 dur-
ing postnatal development, and a reactivation of this 
mechanism could drive the progression of neurodegen-
erative diseases associated with synapse loss166. In this 
context, CR1 needs to be mentioned, which has been 
shown to modulate the impact of the APOE ε4 allele on 
brain fibrillar amyloid burden and is associated with a 
higher risk of developing AD47, thus qualifying for being 
a potential immune target in AD143.

Finally, transforming growth factor β1 (TGFβ1) is an 
important regulatory cytokine that inhibits microglia 
activation and whose levels in plasma, CSF and brain 
are elevated in AD145,167–170. Transgenic overexpression of 
TGFβ1 decreased Aβ burden in an AD mouse model by 
promoting microglial Aβ clearance168. However, block-
ing TGFβ1 and downstream SMAD2–SMAD3 signal-
ling specifically in CD11c‑positive myeloid cells also 
reduced Aβ‑like pathology in a genetic mouse model of 
AD169, but this effect seemed to be due to an increased 
influx of activated peripheral myeloid cells rather than 
a modulation of resident microglia activation. This 
finding emphasizes the need to distinguish the role of 
CNS-resident microglia from that of blood-derived 
mononuclear cells that may enter the CNS over the dis-
ease course or that are being introduced experimentally 
to the brains of AD mouse models. Despite some pro-
gress in dissecting the various roles of resident versus 
peripherally derived myeloid cells in AD44,100,171, it is 
still unknown whether — and if so, by what means — 
peripheral myeloid cells may be superior in fighting AD 
pathology at least when experimentally forced to enter 
the AD brain. Similarly, in the context of Aβ vaccination, 
the role of resident microglia, despite some insights, has 
not been fully elucidated in vivo172–179 — a topic that is 
discussed in more detail elsewhere180.

The concept of instructing innate immune cells to 
facilitate the resolution of inflammatory responses 
through anti-inflammatory mediators is supported by 
various recent in vivo data: aspirin-triggered lipoxin 
A4 (LXA4) was shown to reduce nuclear factor‑κB 
(NF‑κB) activation, pro-inflammatory cytokines and 
chemokines in mice exhibiting AD‑like pathology, while 
it increased the levels of IL‑10 — yet another promi-
nent anti-inflammatory player — and TGFβ1 (REF. 181). 
Similarly, IL‑10, expressed via adeno-associated virus 
(AAV) delivery, reduced microgliosis and astroglio-
sis, and improved cognitive performance in AD‑like 
mice carrying mutated forms of human APP and PS1 
(REF. 182). Results using a different AAV delivery system 
for IL‑10 produced an opposite result183, leaving the part 
of this complex cytokine in AD pathogenesis uncertain. 
Treatment of Tg2576 AD‑like mice expressing mutated 
human APP with the anti-inflammatory small molecule 
HPB242 resulted also in amelioration of AD pathol-
ogy184, supporting the idea that lowering inflammation 
confers beneficial effect in AD. However, anti-inflamma-
tion is not always favourable: hippocampal expression 
of the anti-inflammatory IL‑4 or, as mentioned above, 
IL‑10 (REF. 183) in AD mice worsened amyloid pathol-
ogy185, indicating that a deeper understanding of how 
and when to manipulate the immune response will be 
crucial for obtaining favourable outcomes.

Conclusion and outlook
Recent data clearly show that immune activation in AD 
has the capacity to facilitate and trigger the pathophysi-
ology of AD. The immune system may thus provide 
exciting novel and realistic routes for the diagnosis and 
treatment of AD. However, interfering with neuroin-
flammatory pathways and molecules requires precise 

Figure 4 | Proposed Aβ‑dependent CNS specific 
non-adaptive IL‑12 and IL‑23 actions in AD.  a | In 
healthy brains, microglia do not express detectable levels 
of interleukin‑12 (IL‑12) or IL‑23, and astrocytes are largely 
unresponsive to these cytokines. b | In Alzheimer disease 
(AD), exposure to Aβ leads to expression of both of these 
cytokines in microglia and reactive astrogliosis is 
accompanied by the expression of the respective receptors 
by astrocytes66. It is not clear whether the astroglial 
expression of IL‑12 and IL‑23 receptors is mediated by 
other cytokines or whether Aβ per se can also induce IL‑12 
and IL‑23 receptor expression on astrocytes (denoted by 
the dashed arrows). This rise in IL‑12 and IL‑23, and their 
receptors, leads to exacerbation of AD pathology, 
including increased deposition of Aβ and ultimately to 
cognitive impairment, presumably through neuronal 
damage, whereas inhibition of the IL‑12–IL‑23 signalling 
pathway ameloriates pathology. However, what remains to 
be resolved is whether the IL‑12- and IL‑23‑mediated 
effects in the CNS are conferred by astrocytes and/or by 
microglia, and whether IL‑12 or rather IL‑23 acts as the 
major player in this context.
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knowledge about the underlying immune events — 
which may change during the disease course. Taking into 
account the heterogeneity of AD, implying that not neces-
sarily all individuals with AD exhibit neuroinflammation, 
or at all time points in the course of the disease, patients 
need to be stratified to identify those who may benefit 
most from anti-inflammatory interventions.

Ultimately, combination therapy consisting of both a 
drug targeting Aβ and/or tau, and a medication modu-
lating inflammation may be a way to substantially delay 
progression of the disease. In this respect, repurposing 
strategies may be useful, for several, obvious reasons. 
Examples of potentially repurposed drugs are neutral-
izing antibodies against p40, which are FDA-approved 
for the treatment of psoriasis66, and the NSAID deriva-
tive CHF5074, which was initially developed as a 
γ‑secretase modulator and has now been reclassified 
as a novel, first‑in‑class microglial modulator for the 

treatment of AD, based on the finding that it reduces 
both amyloid burden and microglial activation186,187. 
Interim results from an ongoing Phase II trial in MCI 
patients suggest that CHF5074 confers positive effects 
by reducing biomarkers of neuroinflammation130,188,189.

A detailed knowledge of neuroimmune pathways 
and their molecular underpinnings in AD may also 
lead to a better understanding and treatment of degen-
erative and/or proteinopathic CNS diseases other than 
AD. In addition, it will be equally interesting to learn 
how systemic immune components from young, healthy 
individuals that have been shown to positively modu-
late cognitive performance190 may also have beneficial 
effects (for example, upon blood transfer191) in patho-
physiological conditions, including neurodegenerative 
disorders such as AD. This would broaden the spectrum 
of opportunities to modulate CNS diseases by immune 
factors.
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