
For many decades, neuroscientists under-
stood the brain as a ‘stimulus–response’ organ, 
consisting of individual neurons that lie dormant 
until stimulated. In this traditional model, 
learning and experience merely modulate neural 
activity that is driven by sensory events in the 
world. In recent years, scientists have come to 
realize that the brain probably does not work this 
way. Instead, research and theory are 
con- verging on the idea of the brain as an active
inference generator that functions according to a 
Bayesian Approach to Probability :sensory inputs 
constrain estimates of prior probability (from past 
experience) to create the posterior probabilities 
that serve as beliefs about the causes of such 
inputs in the present.



Brains,	it	has	recently	been	argued,	are	essentially	prediction	machines.	They	are	
bundles	of	cells	that	support	 perception	and	action	by	constantly	attempting	to	match	
incoming	sensory	inputs	with	top-down	expectations	or	predictions.	This	is	achieved	
using	a	hierarchical	generative	model	that	aims	to	minimize	prediction	error	within	a	
bidirectional	 cascade	of	cortical	processing.	Such	accounts	offer	a	unifying	model	of	
perception	and	action,	illuminate	the	functional	 role	of	attention,	and	may	neatly	
capture	the	special	contribution	 of	cortical	processing	 to	adaptive	success.	This	target	
article	critically	examines	this	“hierarchical	prediction	machine”	approach,	concluding	
that	it	offers	the	best	clue	yet	to	the	shape	of	a	unified	science	of	mind	and	action..



The	task	of	the	brain,	when	viewed	from	a	certain	distance,	can	seem	impossible:	
it	must	discover	information	about	 the	likely	causes	of	impinging	 signals	without	
any	form	of	direct	access	to	their	source.	Thus,	consider	a	black	box	taking	inputs	
from	a	complex	external	world.	The	box	has	input	and	output	channels	along	
which	signals	flow.	But	all	that	it	“knows”,	in	any	direct	sense,	are	the	ways	its	own	
states	(e.g.,	spike	trains)	flow	and	alter.	In	that	(restricted)	 sense,	all	the	system	
has	direct	access	to	is	its	own	states.	The	world	 itself	is	thus	off-limits	(though	 the	
box	can,	importantly,	 issue	motor	commands	and	await	developments).	The	brain	
is	one	such	black	box.

Perception	thus	involves	“explaining	away”	the	driving	
(incoming)	 sensory	signal	by	matching	it	with	a	cascade	of	
predictions	pitched	at	a	variety	of	spatial	and	temporal	
scales.	These	predictions	 reflect	what	the	system	already	
knows	about	the	world	(including	 the	body)	and	the	
uncertainties	associated	with	its	own	processing.	
Perception	here	becomes	“theory-laden”	in	at	least	one	
(rather	specific)	sense:	What	we	perceive	depends	heavily	
upon	 the	set	of	priors	(including	 any	relevant	hyper-priors)	
that	the	brain	brings	 to	bear	in	its	best	attempt	to	predict	
the	current	sensory	signal.
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Glutamatergic Model Psychoses: Prediction Error,
Learning, and Inference



A model of the reciprocal 
relationships between inference and
learning, priors and prediction error, 
synaptic plasticity and neural
dynamics. Inference is encapsulated in 
the bistable percepts of the
Necker Cube, that is, when faced with 
ambiguous inputs, the brain
entertains multiple hypotheses and 
makes an inference as to the best
candidate. The powerful effect of 
learning on perception is captured by
the hollow mask illusion, wherein, as a 
result of our overwhelming
experience with faces as convex, we 
perceive a hollow, concave, inverted
mask as convex. All predictions, or 
hypotheses that we entertain, have a
likelihood distribution, which we 
compare with the inputs, computing: a
prediction error; a degree of uncertainty 
associated with that prediction
error. We speculate that fast 
neurotransmitters (GABA and glutamate)
may code the prediction error and 
slower neuromodulators (eg,
dopamine and acetylcholine, depending 
on the task and underlying
circuitry) may compute the uncertainty.



The putative effects of acute and 
chronic ketamine treatment
within the Bayesian model. We predict 
that, with repeated ketamine
exposure, aberrant learning (due to 
deranged synaptic plasticity) and
subsequent inappropriate inferences 
(based on perturbed neural
dynamics) lead to maladaptive and 
inaccurate representations of the
world; delusional beliefs.



In	recent	work,	effects	of	 the	neurotransmitter	dopamine	are	presented	as	
one	possible	neural	mechanism	for	encoding	precision	 (see	Fletcher	&	Frith	
[2009,	pp.	53–54]	who	refer	the	reader	to	work	on	prediction	error	and	the	
mesolimbic	dopaminergic	 system	such	as	Holleman	&	Schultz	1998;	Waelti	et	
al.	2001).	Greater	precision	 (however	encoded)	means	less	uncertainty,	and	is	
reflected	in	a	higher	gain	on	 the	relevant	error	units	 (see	Friston	2005;	2010;	
Friston	et	al.	2009).	Attention,	 if	this	is	correct,	is	simply	one	means	by	which	
certain	error-unit	 responses	are	given	increased	weight,	hence	becoming	
more	apt	to	drive	learning	and	plasticity,	and	to	engage	compensatory	action.



Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The dopamine
neuron is activated by this unpredicted
occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neuron
is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur because
of a mistake in the behavioral response
of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have occurred.
The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an internal
representation of the time of the predicted
reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward 
liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the 
perievent time histogram and
raster of impulses from the same neuron. Horizontal distances of dots 
correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted 
from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
Science 275:1593-1599 (1997).



Andy	Clark
School	of	Philosophy,	 Psychology,	and	Language	Sciences,	University	
of	Edinburgh,	 EH8	9AD	Scotland,	United	Kingdom
andy.clark@ed.ac.uk
http://www.philosophy.ed.ac.uk/people/full-academic/andy-
clark.html

Whatever	next?	Predictive	brains,
situated	agents,	and	the	future	of
cognitive	science

BEHAVIORAL	AND	BRAIN	SCIENCES	(2013),	Page	1	of	
73doi:10.1017/S0140525X12000477



Science 299, 1898 (2003);
Christopher D. Fiorillo et al.
Discrete Coding of Reward Probability and Uncertainty by Dopamine



NATURE | VOL 427 :244-247| (2004)



Subjects reached to a visual target with their right index finger in a
virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, in which the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials













A
utility function U(outcome) measures how good
or bad any possible decision outcome is. If dart
players could choose where the dart will hit the
board, they would choose the position that yields
the most points and would thus maximize utility.

Although we can freely make decisions, we
cannot directly choose the decision outcomes. If
we always aim for the same position a, say the
center of the bull’s eye, and throw many darts,
we will produce a distribution of dart positions, x,
on the dart board (Fig. 1C, inset).Within decision
theory, this probability distribution is denoted
p(outcome = x|decision = a). If we aim at the
position on the board that gives the highest score,
we may instead hit a neighboring area of the
dartboard and receive a low score. Depending on
the position we aim at, different scores become
more or less likely
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Bayesian statistics defines how uncertain
pieces of information may be combined into a
joint estimate. New information (called a likelihood)
needs to be combined or integrated with
information from the past (called a prior). Similar
problems occur when information from several
cues, for example, proprioceptive and visual,
needs to be combined into a joint estimate. Bayesian
decision theory (13), the use of Bayesian
statistics in a decision framework, defines how
our beliefs should be combined with our utility
function. Because most if not all of our decisions
are made in the presence of uncertainty

understanding the way the nervous system 
deals
with uncertainty is central to understanding its
normal mode of operation.
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Integration of priors and likelihoods. To calculate
the probabilities of outcomes, it is often
necessary to update our belief from the past
(prior) with new knowledge (likelihood). For
example, when we play tennis it is helpful to
estimate where the ball will land.
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Integration of priors and likelihoods.
To calculate

the probabilities of outcomes, it is often
necessary to update our belief from the past
(prior) with new knowledge (likelihood). For
example, when we play tennis it is helpful to
estimate where the ball will land. The visual
system, although noisy, still provides us with
an estimate or a likelihood of where the ball
will	land	(sketched	in	red	in	Fig.	2A).	This
knowledge	may	be	combined	with	information
obtained	from	experience;	the	positions	 where	the
ball	may	land	are	not	uniformly	 distributed	over
the	court.	The	locations	may	be	clustered	near	the
boundary	 lines,	where	it	is	most	difficult	 to	return
the	ball.	This	distribution	of	positions	 is	called	the
prior	(sketched	in	green	in	Fig.	2A).	Bayes’s	rule
states	that	how	the	probability	of	the	ball	landing
at	position	x	given	our	observation	o	(posterior)
needs	to	be	estimated	as



Step 1
A central assumption is that 
degrees of belief can be 
represented as
probabilities: that our 
conviction in some hypothesis 
h can be expressed as a real 
number
ranging from 0 to 1, where 0 
means something like \h is 
completely false" and 1
that \h is completely true."

Step 2

These assumptions turn the mathematics of 
probability theory into an engine
of inference, a means of weighing each of a 
set of mutually exclusive and exhaustive
hypotheses H to determine which best 
explain the observed data. Probability theory
tells us how to compute the degree of belief 
in some hypothesis hi, given some data d.

Step 3
Computing degrees of belief as probabilities 
depends on two components. One,
called the prior probability and denoted 
P(hi), captures how much we believe in hi
prior to observing the data d. The other, 
called the likelihood and denoted P(d/hi),
captures the probability with which we would 
expect to observe the data d if hi were
true. These combine to yield the posterior 
probability of hi, given via Bayes' Rule



Step	4

The	denominator	 in	Equation	1	
provides	 a	normalizing	term	which	is	
the	sum	of
the	probability	 of	each	of	the	
possible	 hypotheses	 under	
consideration;	this	ensures	 that
Bayes’	Rule	will	 reflect	the	
proportion	of	all	of	the	probability	
that	is	assigned	to	any
single	hypothesis	hi,	and	(relatedly)	
that	the	posterior	probabilities	of	
all	hypotheses	sum	to	one.

This captures what we might call the “law of 
conservation of belief": a
rational learner has a fixed “mass" of belief to 
allocate over different hypotheses, and the
act of observing data just pushes this mass 
around to different regions of the hypothesis
space. If the data lead us to strongly believe 
one hypothesis, we must decrease our
degree of belief in all other hypotheses. By 
contrast, if the data strongly disfavor all
but one hypothesis, then (to paraphrase 
Sherlock Holmes) whichever remains, however
implausible a priori, is very likely to be the 
truth.

law of conservation of belief





According to this active inference account,
the brain forms neural representations that are constructed from previous 
experience. These function as a generative model of how stimuli in the 
environment cause sensations. Rather than neurons simply lying dormant 
until information arrives via the external sensors
the body (that is, the eyes, ears and taste receptors, among others), the 
brain anticipates incoming sensory inputs, which it implements as 
predictions that cascade throughout the cortex. As predictions propagate 
across cortical regions -following their roughly centrifugal connections-

they modulate the firing of neurons within cortical columns in anticipation of these regions receiving 

actual sensory sensation -that is, the “prediction error”



In this active inference framework,
perception and action are tightly coupled, with both arising from 
the brain’s hypotheses about the world and constrained by 
sensory inputs from the world. By this account, action drives
perception to reduce prediction error.





According to this model, we suggest that agranular visceromotor cortices 
— including the cingulate cortex (Brodmann area 24 (BA24), BA25 and 
BA32), the posterior ventral medial prefrontal cortex (BA14c), the posterior 
orbitofrontal cortex (BA13a) and the most ventral portions of the anterior 
insula — estimate the balance between the autonomic, metabolic and 
immunological resources that are available to the body, and the predicted 
requirements of the body, based on past experience. 

visceromotor cortices simultaneously issue 
predictions of the interoceptive signals that 
are expected to arise as consequences of 
those allostatic visceral changes to the 
primary interoceptive sensory cortex (see the 
figure)

The granular cortex in primary interoceptive 
sensory regions of the mid- and posterior 
insulaare architecturally well suited for 
computing and transmitting prediction error 
and for propagating prediction-error signals 
back to visceromotor regions to modify 
predictions. 



This means that interoceptive perception is largely a construction of beliefs 
that are kept in check by the actual state of the body (rather than vice versa). 
What you experience is in large part a reflection of what your brain predicts is 
going on inside your body, based on past experience. 

Many of the key regions that have been implicated 
in the pathophysiology of depression, such as the 
subgenual and subcallosal ACC and the anterior 
insula are agranular visceromotor limbic regions 
within the interoceptive system that is proposed 
here. It is well known that structural abnormalities 
and chronically hyperactive metabolism within 
agranular visceromotor regions precede the onset of 
depression (for example, see REFS 93,94). 
According to the EPIC model, the predictions that 
result from these structurally or functionally 
abnormal visceromotor regions may result in a 
break-down of body systems that are needed to 
maintain homeostasis in response to stressors or 
everyday events that are perceived as stressors 



In the long term, this chronic imbalance — which is caused by 
constantly predicting the need for more metabolic energy to meet 
the demands of stressors95 — can produce the well-known 
depression-related disruption and eventual downregulation of 
hypothalamus–pituitary–adrenal	 (HPA)-axis	negative-feedback	
loops,	 resulting	 in	chronic	hypercortisolaemia	(Mol.	Psychiatry	
7:254-275	(2002)).	This	in	turn	can	promote	a	pro-inflammatory	
state	that	is	associated	with	increased	levels	of	cytokines	and	
activated	immune	biochemical	pathways	(Nat.	Rev.	Neurosci.	
9:46-56	(2008)).

To reduce prediction error, limbic visceromotor 
cortices begin guiding the body towards a constellation 
of sickness behaviors associated with fatigue and 
negative affect that are designed to reduce activity and 
energy expenditure. Collectively, these behaviors would 
be the initial behavioral symptoms of depression 



EPIC model may also inform treatment of depression and some anxiety disorders. For 
example, deep brain stimulation of the connections that project out of the subcallosal 
cingulate cortex in a region of the visceromotor system (particularly in BA25) is 
effective in remitting treatment-resistant depression (Kennedy et al 2011; Riva-Posse et al 
2014)



Perhaps our most speculative but innovative hypothesis concerns 
the relationship between interoceptive predictions and certain 
physical illnesses that often co-occur with depression, such as 
diabetes, heart disease and cancer115. Aberrant interoceptive 
predictions and the compounding allostatic consequences that 
may result could help to explain the links among these disorders. 
For example, many of the same regions within the interoceptive 
system that show morphological changes in psychiatric illness90 and 
chronic pain116 also show morphological changes with accumulated 
stress across the lifespan117 and leave individuals more vulnerable to 
these metabolic illnesses and with increased risk of mortality118, 
particularly if this stress occurred in childhood119. All of these 
illnesses are also linked to homeostatic and inflammatory 
mechanisms. 



In a Bayesian sense, the effects of CBT may reflect changes in the way that 
precision-weighting pyramidal cells in the viscerosensory cortex adjust the 
weight of prediction-error signals that are communicated to agranular cortices, 
thus altering the sampling of inputs that become the ‘empirical priors’ in 
subsequent predictions. Interestingly, emerging evidence indicates that the 
activity within agranular visceromotor cortices predicts whether CBT or 
pharmacotherapy will be more effective as a treatment option 



Stahl	and	Feigenson	 (2015)	Science	348:91-94



The	Bayesian	Brain	and	Learning
Stahl	and	Feigenson	 (2015)	Science	348:91-94

Given	the	overwhelming	 quantity	of	information	 available	from	
the	environment,	how	do	young	 learners	know	what	to	learn	
about	and	what	to	ignore?	 	11-month-old	 infants		use	
violations	 of	prior	expectations	as	special	opportunities	 for	
learning.	The	infants	were	shown	events	that	violated	
expectations	about	object	behavior	or	events	that	were	nearly	
identical	but	did	not	violate	expectations.	The	sight	of	an	object	
that	violated	expectations	enhanced	learning	and	promoted	
information-seeking	 behaviors;	specifically,	infants	learned	
more	effectively	about	objects	that	committed	violations,	
explored	those	objects	more,	and	engaged	in	hypothesis-
testing	behaviors	that	reflected	the	particular	kind	of	violation	
seen.	Thus,	early	in	life,	expectancy	violations	offer	a	wedge	
into	the	problem	of	what	to	learn.
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Some of
these sophisticated behaviors have been interpreted
in terms of Bayesian inferences that generate
knowledge by weighing new evidence
against prior beliefs (29, 30). Our findings accord
well with such a framework and suggest avenues
to explore how violations detected in different
domains of prior knowledge, or using
different kinds of new evidence, shape exploration
and learning throughout the life span
and across species.

29. J. B. Tenenbaum, T. L. Griffiths, C. Kemp, Trends Cognit. Sci.
10, 309–318 (2006).
30. L. Schulz, Trends Cognit. Sci. 16, 382–389 (2012).



Pure	Reasoning	in	12-Month-Old	Infants	as	Probabilistic	Inference

Ernő	Téglás,	Edward	Vul,	Vittorio	Girotto,	Michel	Gonzalez,	Joshua	B.	
Tenenbaum,	 Luca	L.	Bonatti
Science	332:1054-1059	(2011)

Many	organisms	can	predict	future	events	from	the	statistics	of	past	
experience,	but	humans	also	excel	at	making	predictions	by	pure	reasoning:	
integrating	multiple	 sources	of	information,	 guided	by	abstract	knowledge,	 to	
form	rational	expectations	about	novel	situations,	never	directly	experienced.	
Here,	we	show	that	this	reasoning	is	surprisingly	 rich,	powerful,	 and	coherent	
even	in	preverbal	infants.	When	12-month-old	 infants	view	complex	displays	of	
multiple	moving	objects,	 they	form	time-varying	expectations	about	future	
events	that	are	a	systematic	and	rational	function	of	 several	stimulus	variables.	
Infants’	looking	times	are	consistent	 with	a	Bayesian	ideal	observer	
embodying	abstract	principles	of	object	motion. The	model	explains	infants’	
statistical	expectations	and	classic	qualitative	findings	 about	object	cognition	 in	
younger	babies,	not	originally	viewed	as	probabilistic	 inferences.



Science 332:1054-1059 (2011)



Twelve	kinds	of	movies	were	generated	by	manipulating	 three	
factors	relevant	to	predicting	 these	outcomes:	the	number	of	
objects	of	each	type	in	the	scene	(three	 instances	of	one	type	
and	one	of	the	other	type),	 their	physical	arrangement	(objects	
of	one	type	were	always	closer	to	the	exit	before	occlusion	
than	objects	of	the	other	type),	and	the	duration	of	occlusion	
(0,	1,	or	2	s).	Forming	 correct	expectations	here	requires	 the	
ability	to	integrate	these	three	information	sources,	guided	 by	
abstract	knowledge	about	how	objects	move:	at	a	minimum,	
qualitative	knowledge	about	 solidity	(objects	are	unlikely	 to	
pass	through	 walls)	and	spatiotemporal	continuity	 (objects	
tend	to	move	short	distances	over	brief	time	intervals).	Infants	
appear	to	be	sensitive	to	each	of	these	information	sources	
and	knowledge	systems	individually	
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Infants’ reasoning
abilities are typically studied by measuring their
looking times to visually presented events as an
index of surprise: Longer looking indicates greater
violation of infants’ expectations relative to their
prior knowledge or greater novelty relative to their
interpretation of habituation stimuli. Looking time
studies suggest that preverbal infants can
reason about novel events depending on certain
physical outcome
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Looking time
studies suggest that preverbal infants can
reason about novel events depending on certain
physical outcomes (11, 12); object numerosities
(13); other agents’ beliefs, goals and behaviors
(14–16); and the likely outcomes of simple
random processes (17, 18).

DO NOT INCLUDE THIS SLIDE



kept test events fixed and equal in salience so
that infants’ looking times had the potential to
Show variations in degrees of belief (or conversely,
degrees of surprise) as their expectations changed.
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We describe a Bayesian ideal observer model that
predicts infants’ looking times in our studies and
extends to other aspects of infants’ reasoning
about the physical world, giving a unifying explanation
of several classic results in infant cognition.
This model shows how powerful pure reasoning
capacities could derive from the operation of probabilistic
inference mechanisms constrained by
abstract principles of how objects act and interact
over time.
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Twelve	kinds	of	movies	were	generated	by	manipulating	 three	
factors	relevant	to	predicting	 these	outcomes:	the	number	of	
objects	of	each	type	in	the	scene	(three	 instances	of	one	type	
and	one	of	the	other	type),	 their	physical	arrangement	(objects	
of	one	type	were	always	closer	to	the	exit	before	occlusion	
than	objects	of	the	other	type),	and	the	duration	of	occlusion	
(0,	1,	or	2	s).	Forming	 correct	expectations	here	requires	 the	
ability	to	integrate	these	three	information	sources,	guided	 by	
abstract	knowledge	about	how	objects	move:	at	a	minimum,	
qualitative	knowledge	about	 solidity	(objects	are	unlikely	 to	
pass	through	 walls)	and	spatiotemporal	continuity	 (objects	
tend	to	move	short	distances	over	brief	time	intervals).	Infants	
appear	to	be	sensitive	to	each	of	these	information	sources	
and	knowledge	systems	individually	



Correlation between the model predictions (x axis) and infant looking times (y 
axis, s
with SEM) in our three experiments. Each data point corresponds to one 
experimental condition



Fletcher and Frith (2009), Nature Reviews Neuroscience 10: 48-57 

Recent advances in computational neuroscience 
have led us to consider the unusual perceptual
experiences of patients and their sometimes 
bizarre beliefs as part of the same core
abnormality — a disturbance in error-dependent 
updating of inferences and beliefs about
the world. We suggest that it is possible to 
understand these symptoms in terms of a
disturbed hierarchical Bayesian framework, without 
recourse to separate considerations of
experience and belief.





Schematic	illustration	 of	the	valuation	network.	Regions	
commonly	 implicated	in	evaluating	rewards	and	risks	 in	
neuroeconomic	 imaging	studies	 include	dopaminergic	neurons	in	
the	brainstem,	such	 as	substantia	nigra	(SN)	and	ventral	
tegmental	area	(VTA),	which	send	projections	 to	specific	 areas	in	
the	ventral	striatum,	such	as	the	caudate	nucleus	 and	nucleus	
accumbens	(Nacc).	Dopaminergic	projections	 also	modulate	
neuronal	activity	in	ventromedial	Prefrontal	 Cortex	(vmPFC)	and	
medial	 orbitofrontal	 cortex	(vmOFC),	which	have	repeatedly	
been	shown	 to	represent	reward	value.	



Positive Symptoms of schizophrenia may be explained by a disruption in
the prediction-error signal. In this section, we consider
more closely the possible nature of this disruption, in
terms of how it might arise from abnormal dopamine
neurotransmission and how this single disruption could
be reflected in impairments, comparable in nature
but perhaps different in expression, as we move from
low-level sensory to higher-level inferential processing.

dopamine-neuron
firing encodes the precision or uncertainty of prediction
errors and this precision weights the influence of
prediction errors on inference. This is crucial for optimizing
the balance between top-down prior beliefs and
bottom-up sensory evidence. We can therefore speculate
on the impact of abnormal dopamine-mediated
neuromodulation on prediction errors. It is not the
prediction errors per se that are faulty, it is the way that
they are used and quantified. The size of the prediction
error is meaningless without an estimate of its precision.

A noisy prediction-error signal could therefore lead
to patients’ strange experiences, together with their
readiness to accept incidental stimuli and events as
important and meaningful and to link them in unusual
ways. Persistence of the disruption up the hierarchy can
mean that the attempts at the lower levels to explain
the world will fail. Achieving a world model that is not
continually being signaled as wrong will require more
complex changes. The world will feel strange, and there
may be a sense that there is some underlying change
that must be discovered.
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Delusions are maladaptive beliefs about the world. Based upon 
experimental evidence that prediction error
mismatch between expectancy and outcome drives belief 
formation, this study examined the possibility that
delusions form because of disrupted prediction-error 
processing. We used fMRI to determine prediction-error related
brain responses in 12 healthy subjects and 12 individuals (7 
males) with delusional beliefs. Frontal cortex
responses in the patient group were suggestive of 
disrupted prediction-error processing. Furthermore, across
subjects, the extent of disruption was significantly related to an 
individual’s propensity to delusion formation.
Our results support a neurobiological theory of delusion 
formation that implicates aberrant prediction-error
signaling, disrupted attentional allocation and associative 
learning in the formation of delusional beliefs.



Abnormal response to saliency in midbrain 
regions of patients with
schizophrenia: functional MRI blood-
oxygen-level-dependent (BOLD) activity in
the midbrain.
All data were obtained from a group of 14 
people with early psychosis
and matched controls. (a, b) Functional MRI 
activity in the midbrain during tasks involving
saliency. In one of the tasks (a), stimuli acted 
as probabilistic indicators of either
financially rewarding (‘salient’) or neutral 
(‘non-salient’) outcomes. In the other (b),
stimuli were part of a causal inferential task 
and constituted either a violation (‘salient’) or
a fulfilment (‘non-salient’) of previously learned 
causal associations. (c, d)The size of the
effect on the midbrain activation across groups 
and conditions for each of the
experiments described above (c corresponds 
to a and d corresponds to b). In
both experiments, control subjects’ 
activation was greater for salient than for 
non-salient
events, but this effect was attenuated 
and/or partially reversed in patients

Fletcher and Frith (2009), Nature Reviews 
Neuroscience 10: 48-57



Abnormal connectivity associated with 
hallucinations. 
Lateral views of the left hemisphere of the brain. The 
red lines connect areas that exhibited greater 
frontotemporal electroencephalogram coherence 
during talking than during listening
for normal controls and patients with schizophrenia. 
The thickness of the line indicates
the probability level for the t-tests that compared the 
findings. The thicker the line, the larger
the difference between the two coherences. In the 
controls, coherence during talking was was 
greater than during listening for all 20 of the 
electrode pairs. In the patients, coherence
during talking was greater for only two of the pairs 
(one in each hemisphere).
NS, not significant

Fletcher and Frith (2009), Nature 
Reviews Neuroscience 10: 48-57

Ford, J. M., Mathalon, D. H., Whitfield, S., Faustman,
W. O. & Roth, W. T. Reduced communication between
frontal and temporal lobes during talking in
schizophrenia. Biol. Psychiatry 51, 485–492
(2002).
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Identified unmedicated individuals who experience early psychotic
symptoms but fall below the threshold for a categorical diagnosis.
We observed that, in early psychosis, there was a shift in information
processing favoring prior knowledge over incoming sensory 
evidence.
In the complementary study, we capitalized on subtle variations in
perception and belief in the general population that exhibit graded
similarity with psychotic experiences (schizotypy). We observed
that the degree of psychosis proneness in healthy individuals, and,
specifically, the presence of subtle perceptual alterations, is also
associated with stronger reliance on prior knowledge.
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Relation of performance with schizotypy. (Left) Performance benefit due to prior knowledge
against the global CAPS score, which captures perceptual alterations that
show graded similarity with perceptual atypicalities experienced during psychosis.
Performance benefit was calculated as the difference in d′ between
After and Before Blocks. (Right) Relation between performance benefit and
global PDI scores of the participants. PDI captures belief-related alterations
similar to those seen during psychosis.



Our studies were designed to characterize, in complementary
ways, the balance between visual bottom-up and top-down processing
in clinical individuals with early psychosis and healthy
people prone to developing psychotic symptoms. A relative advantage
in using prior knowledge to discriminate between ambiguous
images was observed in both situations. This finding is
especially striking in the clinical group in study 1 given that
performance in this group (as in psychiatrically ill individuals
more generally) is typically impaired. Such a result is rare and
revealing in that it highlights a specific information-processing
atypicality rather than a general performance deficit

Visual function in early psychosis and in healthy people who are prone
to such experiences is characterized by a basic information processing
shift that favors existing knowledge over incoming
sensory evidence. Although, in the current experimental task,
this shift conferred a performance benefit, under most natural
viewing situations, it may provoke anomalous perceptual experiences.
Specifically, it might impose prior expectations on inputs
to the extent that, ultimately, formed percepts are generated that
have no direct sensory cause: hallucinations
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