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Causal interactions within complex systems can be analyzed at
multiple spatial and temporal scales. For example, the brain can be
analyzed at the level of neurons, neuronal groups, and areas, over
tens, hundreds, or thousands of milliseconds. It is widely assumed
that, once a micro level is fixed, macro levels are fixed too, a rela-
tion called supervenience. It is also assumed that, although macro
descriptions may be convenient, only the micro level is causally
complete, because it includes every detail, thus leaving no room
for causation at the macro level. However, this assumption can only
be evaluated under a proper measure of causation. Here, we use
a measure [effective information (EI)] that depends on both the
effectiveness of a system’s mechanisms and the size of its state
space: EI is higher the more the mechanisms constrain the system’s
possible past and future states. By measuring EI at micro and macro
levels in simple systems whose micro mechanisms are fixed, we show
that for certain causal architectures EI can peak at a macro level in
space and/or time. This happens when coarse-grained macro mecha-
nisms are more effective (more deterministic and/or less degenerate)
than the underlyingmicro mechanisms, to an extent that overcomes
the smaller state space. Thus, although the macro level supervenes
upon the micro, it can supersede it causally, leading to genuine causal
emergence—the gain in EI when moving from a micro to a macro
level of analysis.

In science, it is usually assumed that, the better one can char-
acterize the detailed causal mechanisms of a complex system,

the more one can understand how the system works. At times, it
may be convenient to resort to a “macro”-level description, ei-
ther because not all of the “micro”-level data are available, or
because a rough model may suffice for one’s purposes. However,
a complete understanding of how a system functions, and the
ability to predict its behavior precisely, would seem to require the
full knowledge of causal interactions at the micro level. For ex-
ample, the brain can be characterized at a macro scale of brain
regions and pathways, a meso scale of local populations of neu-
rons such as minicolumns and their connectivity, and a micro scale
of neurons and their synapses (1). With the goal of a complete
mechanistic understanding of the brain, ambitious programs have
been launched with the aim of modeling its micro scale (2).
The reductionist approach common in science has been suc-

cessful not only in practice, but has also been supported by
strong theoretical arguments. The chief argument starts from the
intuitive notion that, when the properties of micro-level physical
mechanisms of a system are fixed, so are the properties of all its
macro levels—a relation called “supervenience” (3). In turn, this
relation is usually taken to imply that the micro mechanisms do
all of the causal work, i.e., the micro level is causally complete.
This leaves no room for any causal contribution at the macro
level; otherwise, there would be “multiple causation” (4). This
“causal exclusion” argument is often applied to argue against the
possibility for mental causation above and beyond physical cau-
sation (5), but it can be extended to all cases of supervenience,
including the hierarchy of the sciences (6).
Some have nevertheless argued for the possibility that genuine

emergence can occur. Purported examples go all of the way from
the behavior of flocks of organisms (7) to that of ant colonies (8),
brains (9), and human societies (10). Unfortunately, it remains
unclear what would qualify some systems as truly emergent and

others as reducible to their micro elements. Also, most arguments
in favor of emergence have been qualitative (11). A convincing
case for emergence must demonstrate that higher levels can be
causal above and beyond lower levels [“causal emergence” (CE)].
So far, the few attempts to characterize emergence quantitatively
(12) have not been based on causal models.
Here, we make use of simple simulated systems, including neural-

like ones, to show quantitatively that the macro level can causally
supersede the micro level, i.e., causal emergence can occur. We do
so by perturbing each system through its entire repertoire of pos-
sible causal states (“counterfactuals,” in the general sense of alter-
native possibilities) and evaluating the resulting effects using
“effective information” (EI) (13). EI is a general measure for causal
interactions because it uses perturbations to capture the effective-
ness/selectivity of the mechanisms of a system in relation to the size
of its state space. As will be pointed out, EI is maximal for systems
that are deterministic and not degenerate, and decreases with
noise (causal divergence) and/or degeneracy (causal convergence).
For each system, we completely characterize the causal mech-

anisms at the micro level, fixing what can happen at any macro
level (supervenience). Macro levels are defined by coarse graining
the micro elements in space and/or time, and this mapping defines
the repertoire of possible causes and effects at each level. By
comparing EI at different levels, we show that, depending on how
a system is organized, causal interactions can peak at a macro
rather than at a micro spatiotemporal scale. Thus, the macro may
be causally superior to the micro even though it supervenes upon
it. Evaluating the changes in EI that arise from coarse or fine
graining a system provides a straightforward way of quantifying
both emergence and reduction.

Theory
In what follows, we consider discrete systems S of connected binary
micro elements that implement logical functions (mechanisms)
over their inputs. We first introduce a state-dependent measure of
causation, the “cause” and “effect information” of a single
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system state s0, before we describe the state-independent EI of
the system S.

State-Dependent Causal Analysis. The micro mechanisms of S specify
its state-to-state transition probability matrix (TPM) at a micro time
step t. Building upon the perturbational framework of causal anal-
ysis developed by Judea Pearl (14; see also ref. 18), the TPM can
be obtained by perturbing S at t0 (13) into all possible n initial
states with equal probability 1/n [doðS= siÞ  ∀i∈ 1 . . . n ]. Per-
turbing the system in this way corresponds to the unconstrained
repertoire (probability distribution) of possible causes UC, and
determines the probability of the resulting states at t+1, corre-
sponding to the unconstrained repertoire of possible effects UE.
Although UC is thus identical to the uniform distribution U [with
pðsÞ= 1=n;   ∀s∈ S ], UE is typically not uniform. A current system
state S = s0 is associated with the probability distribution of past
states that could have caused it (“cause repertoire SPjs0,”
obtained by Bayes’ rule), and the probability distribution of
future states that could be its effects (“effect repertoire SFjs0”).
A system’s mechanisms and current state thus constrain both
the repertoire of possible causes UC and that of possible effects
UE. An informational measure of the causal interactions in the
system (15) can then be defined as the difference [here Kullback–
Leibler divergence (DKL) (16)] between the constrained and
unconstrained distributions:

Cause informationðs0Þ=DKL
�ðSPjs0Þ;UC�;

Effect informationðs0Þ=DKL
�ðSFjs0Þ;UE�:

Cause/effect information depends on two properties: (i) the
size of the system’s state space (repertoire of alternatives), be-
cause both are bounded by log2(n); (ii) the effectiveness of the
system’s mechanisms in specifying past and future states. To
isolate effectiveness from size, we define the following nor-
malized coefficients: Cause coefficientðs0Þ= Cause Informationðs0Þ

log2ðnÞ ;

Effect coefficientðs0Þ= Effect Informationðs0Þ
log2ðnÞ .

The “cause coefficient” describes to what extent a state is
sufficient to specify its past causes, and the “effect coefficient”
indicates how necessary a state is to specify its future effects
(Fig. 1B). In turn, the effect coefficient itself is a function of two
terms, “determinism” and “degeneracy” (see Effect Coefficient
and Effectiveness (Eff) Expressed as Determinism and Degeneracy
for derivation):

Effect coefficientðs0Þ=Determinism coefficientðs0Þ
−Degeneracy coefficientðs0Þ

 =
1

log2ðnÞ
 
X

sF∈UE

pðsF js0Þlog 2ðn · pðsF js0ÞÞ

−
1

log2ðnÞ

X

sF∈UE

pðsF js0Þlog 2ðn · pðsFÞÞ:

:

The determinism coef. is the difference DKLððSF js0Þ;UÞ between
the effect repertoire and the uniform distribution (U) of system
states, divided by log2(n), and measures how deterministically
(reliably) s0 leads to the future state of the system: it is “1”
(complete determinism) when the current state leads to a single
future state with probability p = 1, and is “0” (complete in-
determinism or noise) if it could be followed by every future state
with p = 1/n. The degeneracy coef. measures to what degree there
is deterministic convergence (not due to noise) from other states
onto the future states specified by s0. In broad terms, degeneracy
refers to multiple ways of deterministically achieving the same
effect or function (17, 18). The degeneracy coef. is 1 (complete

degeneracy) when s0 specifies the same future state as all other
states, and 0 when s0 specifies a unique future state (no degeneracy).
Both cause and effect coefficients are minimal (0) in a com-

pletely noisy or completely degenerate system (Fig. 1 C and D)
and maximal (1) in a deterministic, nondegenerate system (Bounds
of Cause and Effect Coefficients and Effectiveness Eff(S). The con-
tribution of a single state to the system’s determinismand degeneracy
are best demonstrated by decomposing the effect coefficient. Al-
though the cause coefficient also reflects the degeneracy and de-
terminism of the system, it is not subdivided further here.

State-Independent Causal Analysis.A state-independent informational
measure of a system’s causal architecture can be obtained by taking
the expected value of cause or effect information over all system
states, a quantity called effective information (EI):

EIðSÞ= hCause Informationðs0Þi=
X

s0∈UE

pðs0ÞDKL
�ðSPjs0Þ;UC�

= hEffect Informationðs0Þi= 1
n

X

s0∈UC

DKL
�ðSF js0Þ;UE�:

The two terms are identical, because the system is assumed to
be time invariant (ht−1 → t0i= ht0 → t+1i), and cause and effect
information are related via Bayes’ rule. EI is also the mutual
information (MI) between all possible causes and their effects,
MI(UC;UE) (Effective Information EI(S) Expressed in Terms of
Cause and Effect Information and Mutual Information MI).
As a measure of causation, EI captures how effectively (de-

terministically and uniquely) causes produce effects in the sys-
tem, and how selectively causes can be identified from effects. As
with the state-dependent measures, the effectiveness (Eff) of the
causal interactions within a system can be captured by normalizing
EI by the system’s size: Eff ðSÞ=EIðSÞ=log2ðnÞ. Also as in the state-
independent case, effectiveness can be split into two components,
determinism and degeneracy:

Eff ðSÞ= hDeterminism coefficientðs0Þi
− hDegeneracy coefficientðs0Þi

 = hDKLððSF js0Þ;UÞi=log2ðnÞ−DKL
�
UEjU��

log2ðnÞ:

Thus, Eff(S) = 1 if EI is maximal for a given system size, and de-
creases with indeterminism (divergence due to noise) or degeneracy
(deterministic convergence), with Eff(S) = 0 for completely noisy
or degenerate systems (Fig. 1 C and D). In a system with perfect

Fig. 1. Cause and effect coefficients in example systems with different causal
architectures. (A) The systems consist of two interconnected binary COPY gates
with possible states 0 and 1. (B) A causally perfect system, in which each state has
one cause and one effect. Thus, s0 = [11] has a cause and effect coefficient (coef.)
of 1. Moreover, there is no divergence (determinism coef. = 1) and no conver-
gence (degeneracy coef. = 0). (C and D) In both the completely indeterministic
and completely degenerate systems, state s0 = [11] is completely insufficient to
specify past system states and completely unnecessary to specify future states
(cause and effect coefficient = 0). Note that the degeneracy coef. is 0 in the
completely noisy system, because all convergence is due to noise alone.
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effectiveness (Fig. 1B), each cause has a unique effect, and each
effect has a unique cause. Thus, such a system [where Eff(S) = 1]
is perfectly retrodictive/predictive, in the sense that not only the
unique future trajectory, but also the unique past trajectory of all
states can be deduced from the TPM (complete causal reversibility).

Levels of Analysis. A finite, discrete system S can be considered at
various levels, from the most fine-grained micro causal model Sm
through various coarse-grained causal models SM. All macro levels
SM are assumed to be “supervenient” on the micro level Sm: given
the micro elements of Sm and the causal relationships between
them, all other members of {S}—the set of all possible causal
models of system S—are fixed as well (19). Although Sm fixes SM,
any SM may be fixed by a number of different lower level descrip-
tions, a property known as “multiple realizability” (20).

Groupings.Micro elements are binary and labeled by Latin letters
{A, B, C. . .}, macro elements by Greek letters {α, β, γ. . .}. Micro
states are labeled {1, 0} and macro states {“on,” “bursting,”
“quiet”. . .). Micro elements can be grouped into macro elements
spatially, temporally, or both. Micro states are grouped into macro
states through a mapping M : Sm → SM . The mapping must be
exhaustive and disjunctive over micro elements (all of the states
of one micro element must be mapped to the states of the same
macro element; note that a macro element can consist of a single
micro element as long as the state space of the system is reduced).
Moreover, the mapping must be such that no micro-level in-
formation is available at the macro level (the identity of the micro
elements grouped into a macro element is lost). For example, the
grouping of the four states of two micro elements into the two
states of one macro element as [[00, 01, 10] = off, [11] = on] is
permitted, whereas the grouping [[00, 01], [10, 11]] is not, because
distinguishing 01 from 10 requires knowing the identity of the
micro elements.

Level-Specific Perturbations. Causal analysis at the micro level Sm,
requires setting S into all possible micro states with equal prob-
ability (i.e., testing all micro alternatives) and determining the
resulting effects. When moving to a macro level SM, S must sim-
ilarly be set into all possible macro states with equal probability
(i.e., testing all macro alternatives). To causally assess any macro
state, then, one must set S into all of the nmicro micro states {sm}
that are grouped into the corresponding macro state sM, and av-
erage over the effects. This is done using a “macro perturbation”:
doðSM = sMÞ= 1

nmicro

P
sm:i∈sM doðSm = sm;iÞ. Using such macro per-

turbations, one can obtain cause/effect information and EI for
every coarse grain of Sm. EI at each macro level is then equivalent
to the MI between the set of macro causes and their macro effects.

Causal Emergence/Reduction. Finally, by assessing EI(S) over all
coarse grains of Sm, one can ask at which level of {S} causation
reaches a maximum. This provides an analytical definition of
causal emergence, expressed in bits: CE=EIðSMÞ−EIðSmÞ.
Thus, if EI(S) is maximal for a macro-level SM rather than the

micro-level Sm, then CE > 0 and causal emergence occurs. If for
every macro-level CE < 0, causal reduction holds. Although the
focus here is on emergence/reduction relative to the micro-
level Sm, the above measure can of course be used to compare
different macro levels.
As mentioned above, EI(S) depends on both the size of the

system’s repertoire of states and on the effectiveness of its
mechanisms. When moving from one system level to another,
both terms change as the state space becomes smaller or larger,
and the individual states become more or less selective with re-
spect to the past, and more or less determined or degenerate with
respect to the future. The respective informational contribu-
tions of repertoire size and effectiveness to ΔEI(S) can be ex-
pressed separately as follows: ΔIEff =ðEff ðSMÞ−Eff ðSmÞÞ· log2ðnMÞ;
ΔISize =Eff ðSmÞ· ðlog2ðnMÞ− log2ðnmÞÞ, where nm/M is the state re-
pertoire size of Sm/M. It follows that ΔEI = ΔIEff + ΔISize = CE.
A positive ΔIEff can thus be due to the macro reducing the

degeneracy of the micro level, increasing the determinism of the
micro level, or both. Notably, coarse graining the micro-level Sm
into macro-level SM implies that ΔISize is always negative. Hence,
for causal emergence to occur [EI(SM) > EI(Sm)], the increase in
effectiveness ΔIEff must outweigh the decrease in ΔISize.

Results
Causal analysis was performed across all coarse grains of a sys-
tem [only the SM with maximal EI(S) is shown in the figures] with
a custom-made Python program. Data plots were created using
MATLAB. Below, we consider examples of spatial, temporal,
and spatiotemporal emergence (see Fig. S1 for an example of
spatial reduction).

Spatial Causal Emergence. As a proof-of-principle example, con-
sider a system of four binary elements Sm = {ABCD} (Fig. 2A).
Each micro mechanism is an AND-gate (two inputs) operating
over some intrinsic noise. The 16 × 16 Sm TPM was constructed
by setting the system into all possible micro states from [0000]
to [1111] with equal probability (Fig. 2B). At the micro level Sm,
effective information EI(S) = 1.15 bits, out of maximally 4 bits,
with effectiveness Eff(Sm) = 0.29. The macro level SM (Fig. 2D),
composed of two elements {α, β}, each with states {“on,” “off”}, is
a coarse graining of Sm as defined by the mappingM in Fig. 2C. The
4 × 4 SM TPM was obtained by setting the system into all possible
macro states from [off, off] to [on, on] with equal probability (Fig.
2E). For the macro level, EI(SM) = 1.55 bits, higher than EI(Sm) =
1.15 bits. Thus, CE(S) = 0.40 bits, demonstrating that in this case
the macro SM beats the micro Sm and constitutes the optimal
causal model of system S. This is because the TPM for SM is much
closer to perfect effectiveness [Eff(SM) = 0.78] and the increase in
effectiveness gained by grouping ΔIEff = 0.97 bits outweighs the
loss in size ΔISize = −0.57 bits. In this example, the gain in
effectiveness ΔIEff at the macro level comes primarily (91%)
from counteracting noise [determinism coef. (Sm) = 0.34;
(SM) = 0.78] and less so (9%) from reducing degeneracy [de-
generacy coef. (Sm) = 0.05; (SM) = 0.006].
The higher effectiveness of the macro level is also evident com-

paring Sm and SM in a state-dependent manner. As an example, the
cause/effect distributions for Sm in state {ABCD} = [0001] are
compared with the corresponding SM state {αβ} = [off, off] in
Fig. 3. Comparing the cause/effect distributions of Sm = [0001]
against the unconstrained repertoires (using DKL) yields 0.83 bits
of cause information and 0.43 bits of effect information. For the
macro SM, cause information is 2 bits and effect information

Fig. 2. Spatial causal emergence (counteracting indeterminism). (A) The micro
level Sm of system S is composed of identical noisy micro mechanisms. (B) The
micro TPM. (C) A macro causal level SM and its TPM are defined by the mapping
M (shown for AB to α, CD to β is symmetric). (D) SM and its macro mechanisms.
(E) By reducing indeterminism and increasing effectiveness Eff, the macro beats
the micro in terms of EI despite the reduced repertoire size (CE = 0.40 bits).
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1.35 bits. The macro beats the micro because {αβ} = [off, off] is
both more selective and more reliable than {ABCD} = [0001].
Causal emergence may arise not only from macro gains in de-

terminism (as above), but also from reducing degeneracy. In Fig. 4,
micro elements A–F are deterministic AND gates connected in
a way that ensures high degeneracy (Fig. 4A, determinism coef. = 1;
degeneracy coef. = 0.6), resulting in Eff(Sm) = 0.4 and EI(Sm) =
2.43 bits (Fig. 4C). The optimal macro groups the six micro
AND gates into three macro COPY gates (αβγ) (Fig. 4B). Both
macro and micro are deterministic, but by eliminating degeneracy
ΔIEff = 1.79 bits > −ΔISize = 1.22 bits. As a result, Eff(SM) = 1, EI
(SM)= 3 bits, and themacro emerges over themicro (CE= 0.57 bits).

Temporal Causal Emergence. The same principles allowing for
emergence through spatial groupings hold for temporal groupings,
which coarse grain micro time steps (tx) into macro time steps
(Tx). The example in Fig. 5 shows micro elements that, upon
receiving an input “burst” of two spikes, respond with an output
burst of two spikes. Thus, elements implement second-order
Markov mechanisms over both inputs and outputs (Fig. 5A). Fig.
5B shows that causal interactions assessed over one micro time
step are weak [EI(Sm) = 0.16 bits; Eff(Sm) = 0.03] because they
fail to capture the second-order mechanisms. By contrast, causal
analysis over two micro time steps (Fig. 5C) gives EI = 1.38 bits
and Eff(Sm) = 0.34. The temporal grouping of micro into
macro states α = {At, At+1} and β = {Bt, Bt+1} (Fig. 5D) is
analogous to the spatial grouping in Fig. 2: {00, 01, 10} = {off}
and {11} = {on}. Over macro time steps, the system becomes
fully deterministic and nondegenerate, EI(SM) = 2 bits, Eff(SM) =
1, and CE(S) = 0.62 bits (Fig. 5 E and F).

Spatiotemporal Causal Emergence. In general, emergence may
occur simultaneously over space and time (Fig. 6). As in Fig.
5, the nine neural-like micro elements in Fig. 6A are second-
order Markov mechanisms, integrating inputs and outputs over
two micro time steps, t−2 t−1, and t0 t+1, respectively [compare
to longer time constants of NMDA receptors (21)]. Moreover,
in the examples above, the micro elements within a macro
element were not connected and were causally equivalent. To
demonstrate that this is not a requisite for causal emergence, in Fig.
6, the micro elements are fully connected and causally heteroge-
neous (self-connections not drawn). All elements are spontane-
ously active (1) with heterogeneous probabilities: p(A/D/G) = 0.45;
p(B/E/H) = 0.5; p(C/F/I) = 0.55. The elements are structured
into three groups {ABC, DEF, GHI} due to different intra-
group and intergroup mechanisms: within each group, if the
sum of intragroup connections Σ(intra) = 0 (for two time steps),

all elements stay 0 (for the next two time steps). However, if the
sum of intergroup connections Σ(inter) = 6 from one or both of
the other two groups over two time steps (burst of synchronous
activity), p(1) is raised by 0.5 for the next two time steps (see Fig.
S2 for macro and micro TPMs of a spatial system with equivalent
rules). At the macro-level SM (Fig. 6B), the three groups of neurons
become macro elements, and two micro time steps (tx) are
grouped into one macro time step (Tx). In neural terms, these
macro elements could represent “minicolumns” having three
states: “inhibited” (all minicolumn neurons silent at Tx), “receptive”
(some firing at Tx), or “bursting” (all firing at Tx). Macro causal
interactions can be summarized as follows: if a macro element is
inhibited, only receiving a burst can move it to the receptive or
(more unlikely) the bursting state; otherwise, it stays inhibi-
ted. As in previous examples, the coarse-grained SM has higher
EI(SM) = 3.51 bits and Eff(SM) = 0.74 than Sm [EI(Sm) = 0.59
bits; Eff(Sm) = 0.033]. In this case, spatiotemporal causal emergence
[CE(S) = 2.92 bits] is due to an increase in determinism that far
outweighs a slight increase in degeneracy and the decrease in size.

Discussion
This paper provides a principled way of assessing at which spatio-
temporal grain size the causal interactions within a system reach
a maximum. Causal interactions are evaluated by effective in-
formation (EI), a measure that is sensitive both to the effec-
tiveness of the system’s mechanisms and to the size of its state
space. Examples with simulated systems demonstrate that, after
coarse graining the micro mechanisms in both space and time, EI
can be higher at a macro level than at a micro level. In these
cases, the macro mechanisms, rather than the micro ones, can
be said to be doing the causal work within a system.

Effective Information, Effectiveness, and Emergence.As shown here,
EI corresponds to the “effectiveness” of a system’s mechanisms
multiplied by repertoire size, expressed in bits. Effectiveness Eff
(S) is the average of the effect coefficients over all system states.
The effect coefficient measures to what extent the current system
state is necessary to specify the system’s future state. This, in turn, is
a function of determinism minus degeneracy. On the cause side,
the equivalent to the effect coefficient is the cause coefficient,
which measures to what extent the current state is sufficient to
specify the system’s past state. For a particular current state,
cause and effect coefficients may differ: for example, a state may
have many causes but only one effect. However, the average of
the effect coefficients over system states, i.e., effectiveness,

Fig. 3. State-dependent cause/effect information. (A) The cause information of
Sm in micro state {ABCD} = [0001] is calculated as the difference (DKL) between
the cause repertoire of state [0001] and the unconstrained micro repertoire UC

(Left). The cause information of SM in the superveningmacro state {αβ} = [off/off]
(Right) is the difference (DKL), between the cause repertoire of [off/off] and the
unconstrained macro repertoire UC. (B) Effect information. The higher
cause and effect information at the macro level is due to an increase in
determinism and decrease in degeneracy, reflecting higher selectivity.

Fig. 4. Spatial causal emergence (counteracting degeneracy). (A) A degenerate
Sm with deterministic AND gates. (B) The cycle of AND gates is mapped onto
a cycle of COPY gates at the macro level. (C) The deterministic but degenerate
micro TPM. (D) The deterministic macro TPM with zero degeneracy. By
eliminating degeneracy and achieving perfect effectiveness, the macro
beats the micro (CE = 0.57 bits).
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corresponds to the average of the cause coefficients (weighted by
the probability of the effects). In other words, within a time-
invariant system the average selectivity of the causes corre-
sponds to the average selectivity of the effects. Note that, in
principle, other measures of causation that, like EI, reflect
causal structure (selectivity, determinism, degeneracy) and
system size, should demonstrate causal emergence as well.
The main result obtained in the simulations is that coarse

graining, both in space and in time, can yield a higher value of
EI. This happens even though the micro has, by definition, a
larger state space than the macro—an advantage with respect to
EI. Given this inherent advantage of the micro, it is under-
standable why the default scientific strategy for analyzing systems
has been one of reduction (Causal Reduction). However, the
examples presented above show that the inherent loss in EI due to
the macro’s smaller repertoire size can be offset if the macro
achieves a greater gain in effectiveness. In turn, greater effective-
ness stems from macro mechanisms constructed from their con-
stituting micro mechanisms in such a way that, at the macro level,
determinism is increased and/or degeneracy is decreased. Genuine
causal emergence can then be said to occur whenever there is
a gain in EI (CE > 0) at the optimal macro level. If instead there is
a loss in EI (CE < 0), causal reduction is appropriate, and the
micro level is the optimal level of causal analysis. The causal
approach pursued here suggests that qualitative or noncausal
accounts of emergence may have been hindered by not being
able to characterize how and why a macro level can actually
have greater causal effectiveness than a micro level (22, 23).

Micro Macro Mappings and Repertoires of Alternatives. The present
approach makes it possible to compare causation at the micro
and macro levels in a fair manner. First, the simulated examples
are such that the macro supervenes strictly upon the micro: once
the micro is defined, all macro levels are fixed. Specifically, no extra

causal ingredients are added at the macro level, such as rules that
apply to the macro only (24). Furthermore, the mapping of micro
into macro elements is such that the identity of micro elements is
lost; otherwise, the macro level would have access to micro-level
information that could offset its reduced repertoire size. Finally,
when causation is evaluated a uniform distribution of alternatives
is imposed independently at the micro and macro levels. For this
uniform distribution of perturbations to be imposed at the macro
level, the probability of the underlying micro perturbations must
be modified by averaging the micro states that map into the same
macro state. The modified distribution of micro perturbations
yielding a uniform distribution of macro perturbations makes EI
sensitive to the causal structure at each level, ultimately allowing
the supervening macro EI to exceed the micro EI.

Emergence as an Intrinsic Property of a System. EI is a causal mea-
sure, because it requires perturbing the system in all possible ways
and evaluating the resulting effects on the system. It is also an
informational measure, because its value depends on the size of
the repertoire of alternatives. Indeed, in the present approach,
causation and information are necessarily linked (25), hence
the term “effective information.” Finally, measuring EI reveals an
“intrinsic” property of the system, namely the average effectiveness/
selectivity of all possible system states with respect to the system
itself. Effectiveness/selectivity can be assessed at multiple spatio-
temporal grains, and the particular spatiotemporal grain at which
EI reaches a maximum is again an intrinsic property of the system.
This in no way precludes an observer from profitably investigating
the system’s properties at other macro levels, at the micro level, or
at multiple levels at once (e.g., neuroscientists studying the brain at
the level of ion channels, individual neurons, local field potentials,
or functional magnetic resonance signals). However, causal
emergence implies that the macro level with highest EI is the one
that is optimal to characterize, predict, and retrodict the behavior
of the system—the one that “carves nature at its joints” (26).
The search for the macro level at which EI is maximal has a par-

allel in information theory: channel capacity is an intrinsic property
defined as the maximal amount of information that can be trans-
mitted along the channel at a certain rate, found by searching over all
possible input distributions (27). Finding the optimal level of coarse
graining for causal emergence is based on a similar search, with
several differences. First,EI is evaluated using perturbations over the
system itself, rather than across a channel (the system is its own input
and output). Second, the probability distributions over micro states
that can be considered must conform to a proper mapping of micro
into macro elements (or time intervals). Additional connections of
causal emergence to established measures, such as reversibility

Fig. 5. Temporal causal emergence. (A) Sm is composed of second-order Mar-
kov mechanisms A and B: at t0, each mechanism responds based on the inputs at
t−2 and t−1, and outputs over t0 and t+1. (B) Causal analysis over one micro time
step gives an incomplete view of the system. (C) A causal analysis over two micro
time steps reveals the second-order Markov mechanisms. (D) The optimal macro
system SM groups two micro time steps into one macro time step for macro
elements {α,β}. (E) Each coarse grained macro mechanism effectively corresponds
to a deterministic COPY gate. (F) The macro one-time step TPM SM has Eff(SM) =
1, and the micro two-time step TPM has Eff(Sm) = 0.34; CE = 0.62 bits.

Fig. 6. Spatiotemporal causal emergence. (A) A “neuronal” system merging
the temporal characteristics of the system in Fig. 5 with a differentiated
spatial structure (Fig. S2). Regular and rounded arrows indicate intergroup
and intragroup connections, respectively. (B) Each macro element receives
inputs from itself and the other macro element. The macro level beats the
micro level, leading to spatiotemporal emergence [CE(S) = 2.92 bits].
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and lumping in Markov processes (28), or epsilonmachines (29),
are a potential subject for future work.

Causal Exclusion and Its Implications. Causal analysis as presented
here endorses both supervenience (no extra causal ingredients at
the macro level) and causal exclusion [for a given system at
a given time, causation occurs at one level only, otherwise causes
would be double counted (4)]. However, causal analysis also
demonstrates that EI can actually be maximal at a macro level,
depending on the system’s architecture. In such cases, causal ex-
clusion turns the reductionist assumption on its head, because to
avoid double-counting causes, optimal macro causation must
exclude micro causation. In other words, macro mechanisms can
always be decomposed to their constituting micro mechanisms
(supervenience); however, if there is emergence, macro causation
does not reduce to micro causation, in which case the macro wins
causally against the micro and takes its place (supersedence). The
notion of irreducibility among levels (does the macro beat the
micro?) is complemented by the notion of irreducibility among
subsets of elements within a level [is the whole more than its
parts (15, 25)?]. From the perspective of a system, emergence
(CE > 0) implies causal “self-definition” at the optimal macro
level—the one at which its causal interactions “come into fo-
cus” (30) and “the action happens.”

Applicability to Real Systems.Measuring EI exhaustively, across all
micro/macro levels, is not feasible for complex physical or biological
systems (Applicability—Network Motifs as Indicators of Emergence).
However, some useful guidelines can be derived from the above
analysis: (i) if Eff(Sm) ≥ Eff(SM), then causal emergence is impos-
sible and causal reduction holds; (ii) if EI(Sm) > log2(nM), where nM
is the state repertoire size of SM, causal reduction holds; (iii) if for
some coarse graining, Eff increases drastically, causal emergence is
to be suspected (as ΔIEff >> −ΔISize). Therefore, systems that al-
ready are close to maximal effectiveness at the micro level (Fig. S1)
indicate causal reduction. By contrast, heavily interconnected
groups of elements with spontaneous activity and the ability to dis-
tinguish between intragroup and intergroup connections, such as the
simplified neural system of Fig. 6, are more suitable for emergence.

In real neural systems, one could compare the respective
effective information at the micro scale of single neurons over
millisecond intervals, the meso scale of neuronal groups over
hundreds of milliseconds, and the macro scale of brain regions
over several seconds (using tools such as optogenetics and calcium
imaging). In this way, classic notions, such that cortical minicolumns
may constitute the fundamental units of brain function (31), or that
the cortex works by population coding in space (32) or rate coding
in time (33) in the face of high intertrial variability (34), could then
be tested rigorously using a measure of effectiveness. Examining
small motifs that are overrepresented in complex networks [such as
brains (35)] could determine whether the network as a whole is
biased toward emergence or reduction. Heuristic assessments of
the likelihood of emergence could also rely on the analysis of
wiring diagrams, which can offer an estimate of degeneracy,
combined with knowledge of the amount of intrinsic noise in a
system, which can provide an estimate of determinism.

Conclusions
The approach to emergence investigated here provides theoretical
support for the intuitive idea that, to find out how a system works,
one should find the “differences that make [most of] a difference”
to the system itself (25) (cf. ref. 36). It also suggests that complex,
multilevel systems such as brains are likely to “work” at a macro
level because, in biological systems, selectional processes must deal
with unpredictability and lead to degeneracy (18). This may also
apply to some engineered systems designed to compensate for noise
and degeneracy. More broadly, this view of causal emergence sug-
gests that the hierarchy of the sciences, from microphysics to mac-
roeconomics, may not just be a matter of convenience but a genuine
reflection of causal gains at the relevant levels of organization.
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Effect Coefficient and Effectiveness (Eff) Expressed as
Determinism and Degeneracy
The state-dependent effect coefficient ðs0Þ= effect  informationðs0Þ

log2ðnÞ
can be described as a function of two terms, the determinism
and degeneracy coefficient. To derive these two terms, the effect
information ðs0Þ, the distance between the effect repertoire
ðSF js0Þ and the unconstrained repertoire of effects UE, is split
into the distance between ðSF js0Þ and the uniform distribution U
with pðsUÞ= 1=n, and a residual term:

Effect Informationðs0Þ=DKL
�ðSF js0Þ;UE�

=
X

sF∈UE

pðsF js0Þlog2
�
pðsF js0Þ
pðsFÞ

�
[S1]

=
X

sF∈UE

pðsF js0Þlog2
�
pðsF js0Þ
pðsUÞ +

pðsUÞ
pðsFÞ

�
[S2]

=
X

sF∈UE

pðsF js0Þ
�
log2

�
pðsF js0Þ
pðsUÞ

�
− log2

�
pðsFÞ
pðsUÞ

��
[S3]

=
X

sF∈UE

pðsF js0Þlog2
�
pðsF js0Þ
pðsUÞ

�
−

X

sF∈UE

pðsF js0Þlog2
�
pðsFÞ
pðsUÞ

�

[S4]

ðusing pðsUÞ= 1=nÞ=
X

sF∈UE

pðsF js0Þlog2ðn · pðsF js0ÞÞ

−
X

sF∈UE

pðsF js0Þlog2ðn · pðsFÞÞ [S5]

=DKLððSF js0Þ;UÞ−
X

sF∈UE

pðsF js0Þlog2ðn · pðsFÞÞ; [S6]

where sF denotes a state of the system SF at t+1 with probability
pðsFÞ according to the unconstrained distribution of effects UE.
s0 is the present system state. The determinism coefficient is then
the left term in lines S5 and S6 divided by log2(n):

Determinism  coefficientðs0Þ=
X

sF∈UE pðsF js0Þlog2ðn · pðsF js0ÞÞ
log2ðnÞ

=
DKLððsF js0Þ;UÞ

log2ðnÞ
;

[S7]

the degeneracy coefficient the right term:

Degeneracy  coefficientðs0Þ=
X

sF∈UE pðsF js0Þlog2ðn · pðsFÞÞ
log2ðnÞ

;

[S8]

as defined in the main article.
The effectiveness (Eff) of a system assesses the causal relations

in a system in a state-independent manner, irrespective of the
size of the system’s state space:

Eff ðSÞ= EIðSÞ
log2ðnÞ

=
hEffect Informationðs0Þi

log2ðnÞ

=

X
s0∈UC pðs0ÞDKL

�ðSF js0Þ;UE
�

log2ðnÞ
; [S9]

where the effective information EI(S) is the average effect in-
formation of all system states s0, distributed according to UC, the
unconstrained repertoire of causes, which is identical to the uniform
distribution U; thus, here pðs0Þ= 1=n. EI(S) can then be divided in
the same way as the state-dependent effect information:

EIðSÞ= hEffect  Informationðs0Þi; [S10]

=

*
DKLððSF js0Þ;UÞ−

X

sF∈UE

pðsF js0Þlog2
�
pðsFÞ
pðsUÞ

�+
; [S11]

= hDKLððSF js0Þ;UÞi−
*

X

sF∈UE

pðsF js0Þlog2
�
pðsFÞ
pðsUÞ

�+
; [S12]

= hDKLððSF js0Þ;UÞi−
X

s0∈UC

pðs0Þ
X

sF∈UE

pðsF js0Þlog2
�
pðsFÞ
pðsUÞ

�
;

[S13]

= hDKLððSF js0Þ;UÞi−
X

sF∈UE

pðsFÞlog2
�
pðsFÞ
pðsUÞ

�
; [S14]

= hDKLððSF js0Þ;UÞi−DKL
�
UE;U

�
: [S15]

The last equality is due to the fact that pðsFÞ is the probability of
state sF to occur at t+1 following UE, the unconstrained distribu-
tion of effects (future states) obtained by setting the system S at
t0 into all possible states s0 with equal probability pðs0Þ= 1=n.
Both, indeterminism and degeneracy at the micro level may

be indicative of causal emergence (Discussion, main text). Note
that, in previous work, it was suggested that a convergence of
two causes onto the same effect—an instance of degeneracy—may
actually disqualify the micro level from causation (1, 2) (although
see ref. 3).

Effective Information EI(S) Expressed in Terms of Cause and
Effect Information and Mutual Information MI
The effective information of a system, EI(S), can be obtained as
the expected value of the cause or effect information. Moreover,
EI(S) is identical to the mutual informationMIðUC;UEÞ : theMI
between the system S set to all possible counterfactuals (system
states) with equal probability (unconstrained repertoire of cau-
ses, UC) and the resulting distribution of system states at the next
time step (unconstrained repertoire of effects, UE). Note that EI
was originally introduced as a measure of causal influence of one
subset of a system over another (1), whereas here it captures the

1. Yablo S (1992) Mental causation. Philos Rev 101:245–280.
2. List C, Menzies P (2009) Non-reductive physicalism and the limits of the exclusion

principle. J Philos CVI(9):475–502.
3. Shapiro L, Sober E (2012) Against proportionality. Analysis 72:89–93.
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overall effectiveness of system S onto itself (see refs. 2 and 3 for
related measures).
In the following derivation, we start from the definition of

EI(S) as the average effect information of all system states s0 as
counterfactual causes [distributed according to UC with equal
probability pðs0Þ= 1=n for all system states]:

EIðSÞ= hEffect Informationðs0Þi=
X

s0∈UC

pðs0ÞDKL
�ðSF js0Þ;UE�=

[S1]

ðusing pðs0Þ= 1=n ∀s0Þ= 1
n

X

s0∈UC

DKL
�ðSF js0Þ;UE�: [S2]

Using Bayes’ rule and time invariance, we then show that the
average effect information is indeed equivalent to the mutual
information MIðUC;UEÞ and to the expected value of the cause
information, which is the average cause information of each
accessible state at t0, weighted by pðs0Þ according to UE :

EIðSÞ= hEffect Informationðs0Þi=MI
�
UC;UE�

= hCause Informationðs0Þi: [S3]

In detail:

EIðSÞ= hEffect Informationðs0Þi=
X

s0∈UC

pðs0ÞDKL
�ðSF js0Þ;UE�=

[S4]

=
X

s0∈UC

pðs0Þ
X

sF∈UE

pðsF js0Þlog2
�
pðsF js0Þ
pðsFÞ

�
=

[S5]

=
X

s0∈UC

X

sF∈SF

pðs0ÞpðsF js0Þlog2
�
pðsF js0Þ
pðsFÞ

�
= [S6]

ðBayes’ ruleÞ=
X
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X

sF∈UE

pðs0; sFÞlog2
�

pðs0; sFÞ
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�
= [S7]

=MI
�
UC;UE�= [S8]

ðtime invarianceÞ=
X

sP∈UC

X

s0∈UE

pðsP; s0Þlog2
�

pðsP; s0Þ
pðsPÞpðs0Þ

�
= [S9]

ðBayes’ ruleÞ=
X

sP∈UC

X

s0∈UE

pðs0ÞpðsPjs0Þlog2
�
pðsPjs0Þ
pðsPÞ

�
=

[S10]

=
X

s0∈UE

pðs0Þ
X

sP∈UC

pðsPjs0Þlog2
�
pðsPjs0Þ
pðsPÞ

�
=

[S11]

=
X

s0∈UE

pðs0ÞDKL
�ðSPjs0Þ;UC�= hCause Informationðs0Þi:

[S12]

MI is originally a statistical measure of how much information
is shared between a source and a target (4). In the present

context, MI is applied between two time steps of a system that is
first perturbed into all counterfactuals (alternative states) with equal
probability and then observed at the next time step. Because of the
system perturbations, MI here is a causal measure. In other words,
EI(S) is the MI between the set of all possible causes UC and the
set of all their effects UE. Usually, however, MI is calculated for
observed distributions of system states and thus not a causal
measure, but a statistical measure of correlation.

Bounds of Cause and Effect Coefficients and Effectiveness
Eff(S)
In the following, we will show that the cause and effect coefficients,
as well as the effectiveness Eff(S), are bounded between 0 and 1
ð∈½0 . . . 1�Þ :

Cause coefficientðs0Þ=Cause informationðs0Þ
log2ðnÞ

=
DKL

�ðSPjs0Þ;UC
�

log2ðnÞ
; [S1]

Effect coefficientðs0Þ=Effect informationðs0Þ
log2ðnÞ

=
DKL

�ðSF js0Þ;UE
�

log2ðnÞ
; [S2]

Eff ðSÞ= EIðSÞ
log2ðnÞ

=

1
n

X
s0∈UCDKL

�ðSF js0Þ;UE�

log2ðnÞ
= hEffect coefficientðs0Þi: [S3]

The lower bound (0) is given by the fact that the Kullback–
Leibler divergence ðDKLÞ is always nonnegative (Gibbs’ inequality).
Because the cause and effect information are expressed in terms
of DKL and the state-independent effective information EI(S) is
just an average of the state-dependent values, neither of the three
coefficients can be negative. It thus remains to show that cause
and effect coefficients cannot exceed 1.
The cause information ðs0Þ is the DKL between the cause rep-

ertoire ðSPjs0Þ and UC, the unconstrained cause repertoire, which
is identical to the uniform distribution with pðsPÞ= 1=n  ∀sP. It
follows that

Cause informationðs0Þ=DKL
�ðSPjs0Þ;UC�

=
X

sP∈UC

pðsPjs0Þlog2
�
pðsPjs0Þ
pðsPÞ

�
= [S4]

=
X

sP∈UC

pðsPjs0Þlog2ðn · pðsPjs0ÞÞ [S5]

ðsince pðsPjs0Þ≤ 1Þ≤
X

sP∈UC

pðsPjs0Þlog2ðnÞ= log2ðnÞ; [S6]

and thus

1. Tononi G, Sporns O (2003) Measuring information integration. BMC Neurosci 4:31.
2. Ay N, Polani D (2008) Information flows in causal networks. Adv Complex Syst 11(1):

17–41.
3. Korb KB, Nyberg EP, Hope L (2011) Causality in the Sciences, eds Illari P, Russo F,

Williamson J (Oxford Univ Press, Oxford), pp 628–652.
4. Cover TM, Thomas JA (2006) Elements of Information Theory (Wiley-Interscience,

Hoboken, NJ).
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Cause coefficientðs0Þ≤ 1: [S7]

The effect information ðs0Þ is the DKL between the effect rep-
ertoire ðSF js0Þ and UE, the unconstrained effect repertoire. UE is
in general not identical to the uniform distribution. However,

pðsFÞ=
X

s0∈UC

pðsF js0Þ · pðs0Þ; [S8]

where pðs0Þ= 1=n  ∀s0 and thus:

pðsF js0Þ≤ n · pðsFÞ; ∀sF : [S9]

Using Eq. S9, if follows that:

Effect informationðs0Þ=DKL
�ðSF js0Þ;UE�

=
X

sF∈UE

pðsF js0Þlog2
�
pðsF js0Þ
pðsFÞ

�
= [S10]

ðusing Eq:  S9Þ≤
X

sF∈UE

pðsF js0Þlog2
�
n · pðsFÞ
pðsFÞ

�
=
X

sF∈UE

pðsF js0Þlog2ðnÞ

[S11]

= log2ðnÞ; [S12]

and thus

Effect coefficientðs0Þ≤ 1: [S13]

Finally, because the effect coefficient ðs0Þ∈ ½0 . . . 1� ∀s0, also its
average over all system states, the state-independent effectiveness
Eff ðSÞ∈ ½0 . . . 1�.
Causal Reduction
To complement the examples of causal emergence in the main
text, we here provide an example in which causal reduction is
called for. In Fig. S1, a macro mechanism works as an XOR logic
gate (as an isolated part of a larger circuit board) with inputs X, Y,
and output Z (Fig. S1A). At the macro level, the system (XOR,X,
Y,Z) generates 2 bits of EI over one macro time step Tx (the XOR
operates after a “decision” period where it processes the input)
and Eff ðSMÞ= 0:5. The macro XOR gate is actually composed of
(supervenes upon) nine deterministic micro logic gates (COPY,
NOT, AND, OR). In this case, however, causal interactions are
stronger at the micro level and over a single micro time step tx
[EIðSMÞ= 7:43 bits and Eff ðSMÞ= 0:83 ]. Thus, CE = −5.43 bits,
corresponding to negative causal emergence, i.e., reduction. Note
that in this case the micro circuit is deterministic and minimally
degenerate (0.17), so the macro cannot offset the loss of effective
information due to its reduced size by a gain in determinism or a
reduction in degeneracy.
To demonstrate this case of causal reduction, we have assumed

that a deterministic micro circuit underlies the above macro
circuit. In general, however, real digital circuits are often built
frommany stochastic analog micro elements in a highly degenerate
manner, to compensate for noise at the lower level and to create
deterministic macro elements. In this way, digital circuits and other
engineered systems follow similar design principles as the more
physiological examples presented in the main text. Consequently,
there is the potential for either causal emergence or reduction
in digital circuits, depending on the underlying micro level, just as
in physiological systems.
More generally, the notion of causal reduction ðCE< 0Þ stands

in contrast to previous accounts of reduction that focused on the

relationship between scientific theories and whether or not they
are reducible to one another (1). In the present account based on
causal analysis, the focus is instead on the relationship between
micro and macro levels of mechanisms. This account reveals why
there is a bias in favor of reductionism in mechanistic scientific
explanations. The bias is understandable given that, everything
else being equal, the micro would always beat the macro: being
more detailed by definition, the micro has an inherent advantage
in how informative its causal mechanisms are. This inherent ad-
vantage is captured quantitatively in causal analysis because the
micro can benefit from both ΔIEff and ΔISize, whereas the macro
can only gain from ΔIEff .

Causal Emergence in a System with Causally Heterogeneous
Elements
Although the examples in the main text (with the exception of
Fig. 6) all have macro elements with underlying unconnected and
causally equivalent micro elements, this is not a necessity for
causal emergence. In Fig. S2A, the six micro elements are fully
interconnected and causally heterogeneous. The elements are
structured into two groups {ABC, DEF} due to different intra-
group and intergroup mechanisms: within each group, if the sum of
intragroup connections Σ(intra) = 0, all elements stay 0 (inactive)
the next time step. However, if the sum of intergroup connections
Σ(inter) = 3 (synchronous activity from the other group), all ele-
ments turn 1, unless they are all 0, in which case they become
spontaneously active (1) with probabilities: p(A/D) = 0.45; p(B/
E) = 0.5; p(C/F) = 0.55. Because the micro transition proba-
bility matrix (TPM) is noisy, EIðSmÞ= 1:13 bits and
Eff ðSmÞ= 0:19 (Fig. S2B). The optimal macro grouping SM (Fig.
S2C) has a more deterministic TPM (Fig. S2D),
EIðSMÞ= 1:84 bits and Eff ðSMÞ= 0:58. Thus, the macro super-
sedes the micro [CE(S) = 0.72 bits] despite its reduced reper-
toire size, because it counteracts noise by responding almost
deterministically to synchronous activity over intergroup con-
nections.
The neural-like system of Fig. 6 in the main text has equivalent

spatial properties to the example system of Fig. S2 (fully con-
nected, causally heterogeneous elements, sensitive to differences
in intraconnections and interconnections). In addition, it has the
same temporal properties as the system shown in Fig. 5 (main text),
with second-order Markov mechanisms at the micro level. The
system’s states space at the micro level thus contains 218 states,
which prohibited an exhaustive search for the optimal macro level.
Nevertheless, the spatiotemporally emergent macro grouping
shown in Fig. 6B (main text) is assumed to be the optimal macro
grouping based on the results obtained from the examples of
Fig. S2 and Fig. 5 (main text).

Applicability—Network Motifs as Indicators of Emergence
Measuring EI exhaustively, across all micro/macro levels, is not
feasible for large systems. This is because, assuming N binary
elements, BN − 1 (Nth Bell number) possible groupings of those
micro elements into macro elements exist, each of which entails
∏k

j=1ðBmðjÞ+1 − 1Þ possible groupings of micro into macro states,
where k is the number of macro elements with mð jÞ micro ele-
ments each. The number of EI computations to determine the
spatiotemporal grain with maximal EI thus increases dramatically
with N (N = 1, 1; N = 2, 5; N = 3, 27; N= 4, 180 computations,
etc.) if calculated exhaustively.
In large, complex networks where an exhaustive causal analysis is

unfeasible, overrepresented network motifs could already indicate
whether the network as a whole is biased toward emergence or
reduction. For example, the two most common network motifs

1. Nagel E (1961) The structure of science: problems in the logic of scientific explanation
(Harcourt, Brace & World, New York).
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shared by the gene networks in Escherichia coli and the brain
of Caenorhabditis elegans are the feedforward loop and the bifan
(1). Both these network motifs mimic in their connectivity
precisely the micro element groups that made up the optimal
(winning) macro elements in our chosen examples. In Fig. 2 (main
text), the first spatial example, the macro elements are bifans,
whereas in Fig. 6 (main text), the first temporal example, the

macro elements are feedforward loops. These are perhaps the
simplest possible functionally relevant macro elements. Both
the bifan and the feedforward loop show causal convergence
(degeneracy) in either space or time. A greater than random
prevalence of these or similar network motifs, paired with some
amount of intrinsic noise in the system, may indicate that the
system operates at a macro level.

1. Milo R, et al. (2002) Network motifs: Simple building blocks of complex networks.
Science 298(5594):824–827.

Fig. S1. Causal reduction. (A) A part of a larger circuit is presented, which performs a macro XOR logic function over its inputs X, Y, and outputs to Z. (B) At the
micro level, the XOR consists of nine deterministic logic gates. The system is deterministic at both the micro and the macro level. Moreover, the degeneracy
coefficient at the micro level is lower than at the macro level. Therefore, in this case, the micro beats the macro, leading to causal reduction. CE(S) = −5.43 bits.

Fig. S2. Causal emergence in a system with differentiated connectivity. (A) Micro system Sm with six elements. Regular and rounded arrows indicate in-
tergroup and intragroup connections, respectively. (B) Noisy micro-level TPM. (C) Macro system SM. Each macro element receives inputs from itself and the
other macro element. (D) More deterministic macro-level TPM. CE(S) = 0.72 bits.
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