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ABSTRACT

BACKGROUND: Models of hallucinations emphasize imbalance between sensory input and top-down influences
over perception, as false perceptual inference can arise when top-down predictions are afforded too much
precision (certainty) relative to sensory evidence. Visual hallucinations in Parkinson’s disease (PD) are associated
with lower-level visual and attentional impairments, accompanied by overactivity in higher-order association brain
networks. PD therefore provides an attractive framework to explore contributions of bottom-up versus top-down
disturbances in hallucinations.

METHODS: We characterized sensory processing during perceptual decision making in patients with PD with (n = 20)
and without (n = 25) visual hallucinations and control subjects (n = 12), by fitting a hierarchical drift diffusion model to
an attentional task. The hierarchical drift diffusion model uses Bayesian estimates to decompose task performance
into parameters reflecting drift rates of evidence accumulation, decision thresholds, and nondecision time.
RESULTS: We observed slower drift rates in patients with hallucinations, which were less sensitive to changes in task
demand. In contrast, wider decision boundaries and shorter nondecision times relative to control subjects were found
in patients with PD regardless of hallucinator status. Inefficient and less flexible sensory evidence accumulation
emerges as a unique feature of PD hallucinators.

CONCLUSIONS: We integrate these results with evidence accumulation and predictive coding models of halluci-
nations, suggesting that in PD sensory evidence is less informative and may therefore be down-weighted, resulting in
overreliance on top-down influences. Considering impaired drift rates as an approximation of reduced sensory
precision, our findings provide a novel computational framework to specify impairments in sensory processing that
contribute to development of visual hallucinations.

Keywords: Bayesian, Bottom up, Hierarchical drift diffusion model, Parkinson’s disease, Perception, Precision, Top
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Visual hallucinations (VHs) are common in Parkinson’s disease
(PD), occurring in over 30% of newly diagnosed and early-
stage patients and increasing to upwards of 70% by the late
stages of the disease (1-3). However, despite their prevalence,
VHs remain poorly understood, and treatment options are
limited (4). Continued characterization of the psychological and
mechanistic correlates of VHs in PD will be crucial to inform
therapeutic advances.

Proposed explanatory models for VHs in PD emphasize a
state of reduced sensory input, where the ongoing perceptual
process is vulnerable to influence from internally generated
imagery (5-8). This is in keeping with a transdiagnostic
framework, where hallucinations arise when the balance
between sensory input and top-town influence over perception
is disrupted, such that sensory information is reduced or not

properly integrated, and there is a predominance of top-down
influence (9-13). In this context, there is both impairment in
sensory evidence accumulation and a failure of Bayesian
inference processes regulating top-down versus bottom-up
influences on perception.

In formal computational terms, VHs can be considered false
perceptual inference (13). Perceptual inference can be
computationally implemented by predictive coding or Kalman
filtering, in which incoming sensory input is predicted based
on past information, and a prediction error specifies the
difference between the expected and incoming evidence.
Precision is a measure of certainty determining the weight
those errors will have (termed their Kalman gain) in influencing
the updating of subsequent estimates (14). This is important
in theories of hallucinations, where the top-down versus
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bottom-up imbalance is driven by a possibly compensatory
imbalance of precision, in which top-down predictions are
afforded too much precision in relation to sensory evidence. A
prediction that follows is that patients with VHs should show
reduced sensory precision.

In PD, sensory input is affected by dopaminergic retinal
changes and impairments in lower-level visual processes and
attention—all of which can be more pronounced in patients
with hallucinations (15). However, hallucinations can also
occur in patients in whom ophthalmologic measures and
performances on lower-level perceptual tasks are equivalent to
those in nonhallucinating patients (16). A possibility is that
lower-level sensory impairment and reduced attention confer
risk factors for VHs in PD, but failures in the dynamic inte-
gration of visual input and attention trigger their occurrence
(6,8). We aimed to investigate the dynamic processes under-
lying visual perception in PD hallucinators by applying a drift
diffusion model (DDM) to an attentional task. Crucially, atten-
tional deficits (and the use of an attentional task) follow from
the above aberrant precision account. In predictive coding,
attention serves as a gain control mechanism to enhance the
precision of sensory prediction errors (17-21). Increased pre-
cision implies more in-depth processing of a stimulus (22).
Aberrant precision control is therefore consistent with an
attentional deficit, where sensory evidence is not efficiently
selected and enhanced, leading to failures in belief updating
and perceptual inference.

DDMs are based on the premise that reaction time and
response output can be decomposed into parameters
reflecting the latent cognitive processes driving task perfor-
mance (23). The DDM quantifies information extracted from a
stimulus (drift rate), the evidence needed to make a decision
(boundary separation), and components related to stimulus
encoding and response output (nondecision time) (24,25). In
the context of predictive coding, the drift rate can be used to
approximate precision or Kalman gain, as the rate of sensory
evidence accumulation would correspond to the precision (i.e.,
confidence or certainty) ascribed to the evidence being accu-
mulated. In this study, we applied a Bayesian hierarchical
version of the DDM, which is robust in the context of low trial
numbers (26,27). This makes the task suitable for clinical
contexts where task duration is necessarily limited, and it has
been successfully fitted to data from patients with PD in pre-
vious studies (28-30). We assessed participants on the
attention network task (ANT) (31), which allowed us to measure
perceptual decision making under conditions with different
levels of difficulty as determined by perceptual conflict in the
stimuli.

Under the DDM, we predicted that patients with VHs
would show reduced sensory precision relative to patients
without hallucinations, as evidenced by impairments in pa-
rameters reflecting the integration or accumulation of sensory
evidence in the decision-making process, i.e., the drift rate or
boundary separation. However, their nondecision compo-
nents should be similar. We also predicted that control sub-
jects and patients without hallucinations would modulate their
drift rate and boundary separation in response to the different
levels of perpetual conflict, but that patients with VHs would
not show the same level of flexibility in response to task
demands.

Visual Hallucinations in PD

METHODS AND MATERIALS

Case Selection

We recruited 50 patients from the Parkinson’s Disease
Research Clinic at the Brain and Mind Centre, University of
Sydney. Patients were identified as hallucinators if they self-
reported visual hallucinatory phenomena and scored =1 on
question 2 of the Movement Disorder Society—sponsored
revision of the Unified Parkinson’s Disease Rating Scale (i.e.,
over the past week have you seen, heard, smelled or felt things
that were not really there? If yes, the examiner asks the patient
or caregiver to elaborate and probes for information) (32). This
resulted in 24 patients in the VH group and 26 patients in the
nonVH group. Four patients from the VH group and 1 from the
nonVH group were excluded from analysis owing to excessive
missed responses on the experimental task, leaving a final
cohort of 20 patients in the VH group and 25 patients in the
nonVH group. A proportion of these patients were included in a
previous behavioral study of the ANT (33). We recruited 12
age-matched control subjects from a volunteer panel.

All patients satisfied the United Kingdom Parkinson’s Dis-
ease Society Brain Bank criteria and were not demented,
scoring above the recommended Mini-Mental State Examina-
tion cutoff of =26 (34). Patients were assessed on the Hoehn
and Yahr Scale and the Motor Examination section of the
Unified Parkinson’s Disease Rating Scale. The Mini-Mental
State Examination and Montreal Cognitive Assessment were
administered as measures of general cognition. Clinical
assessments and the experimental task were performed with
patients in the “on” state, having taken their regular dopami-
nergic medication, and dopaminergic dose equivalence scores
were calculated. No patients in the cohort were taking anti-
psychotic medication or cholinesterase inhibitors. Control
subjects were screened for a history of neurological or psy-
chiatric disorders. The study was approved by the local ethics
committees, and participants provided informed consent.

Attention Network Task

We administered a shortened version of the ANT (31), which
requires participants to determine if a central arrow points left
or right. Central arrows are flanked by flat lines (neutral con-
dition), arrows facing the same direction (congruent condition),
or arrows facing a mixture of directions (incongruent condition)
(Figure 1A). The perceptual conflict in the incongruent condi-
tion is designed to place a greater demand on attentional
processes relative to the congruent and neutral conditions.
See Supplement for task details.

Hierarchical DDM of the ANT

DDMs are widely applied to rapid, two-choice decision-making
tasks such as the ANT (25,35,36). DDMs are typically
described by four main parameters: drift rate (v), boundary (a),
decision bias (z), and nondecision time (T). The decision pro-
cess is modeled as the gradual accumulation of information,
reflected by the drift rate, which continues until a decision
boundary is reached (37). The decision bias parameter cap-
tures a priori bias toward one of the two responses. Nonde-
cision time incorporates components that are not part of the
evidence accumulation process, including stimulus encoding,
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Figure 1. Attention network task conditions and drift diffusion model. (A)
The three conditions in the attention network task. Examples of left and right
stimulus cues for each condition are shown here; however, in the task, only
one cue was presented per trial for a maximum of 1700 ms. (B) Schematic
example of drift diffusion trajectories. Evidence is noisily accumulated to-
ward a left or right response (blue and red panels), which are separated by
the boundary threshold (a). The average evidence accumulation is denoted
by drift rate (v). The evidence accumulation begins after a period of
nondecision time (T). Density plots show the distribution of observable re-
action times (RT). [Adapted from Wiecki et al. (26) and Zhang and Rowe (73).]

extracting stimulus dimensions, and executing a response (36).
Figure 1B is a schematic diagram of the drift diffusion process.
We applied a hierarchical DDM (hDDM) using the hDDM
toolbox  (http://ski.clps.brown.edu/hddm_docs/) (26). The
hDDM uses Bayesian estimation to generate posterior distri-
butions of parameters. This approach optimizes the tradeoff
between within-subject and between-subject random effects,
accounting for both within-subject variability and group-level
similarities, as individual parameters are constrained by a
group-level distribution.

We tested three models that all assumed an unbiased
starting point (z), given that left/right responses were coun-
terbalanced, and assumed that nondecision time (T) would not
be expected to vary as a function of condition, as the stimulus
encoding and motor responses required across conditions
were comparable. Model specifications were as follows: in the
first model, only drift rate (v) was permitted to vary by condi-
tion, and decision boundary (a) was held constant; in a second
model, decision boundary (a) could vary across conditions, but
drift rate (v) was held constant; in a third model, both v and a
were free to vary across conditions. For all models, Markov
chain Monte Carlo simulations were used to generate 120,000
samples from the joint posterior parameter distribution. The
first 20,000 samples were discarded as burn-in, and we used a
thinning factor of 10, with outliers specified at 5%. Conver-
gence was assessed by visually inspecting the Markov chains
and computing the R-hat Gelman-Rubin statistic where suc-
cessful coverage is indicated by values <1.1 (37). The best
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model was determined by comparing the deviance information
criterion (DIC) of each model, which evaluates a model’s
goodness-of-fit while accounting for model complexity (i.e.,
number of free parameters), with lower DIC values indicating
better model fit (38). To further evaluate the best fitting model,
we ran posterior predictive checks by averaging 500 simula-
tions generated from the model’s posterior to confirm it could
reliably reproduce patterns in the observed data (26). The fitted
ANT data and hDDM source code can be found at https://
github.com/claireocallaghan/hDDM_ANT_PD.

Statistical Analysis

Independent samples t tests and analyses of variance with
Tukey post hoc tests compared demographics and behavioral
results from the ANT. Parameters from the hDDM were
analyzed using Bayesian hypothesis testing to determine the
extent of overlap between the percentage of samples drawn
from two posterior density distributions. Posterior probabilities
are considered significantly different if <56% of the distribu-
tions overlap (26-28). The proportion of overlap in the posterior
probabilities is denoted by P to distinguish it from the classical
frequentist p values.

RESULTS

Participant Characteristics

The groups were matched for age (Fos4 = 1.31, p = .28).
Performance on the Mini-Mental State Examination was similar
across groups (Foss = 1.07, p = .35), but the Montreal
Cognitive Assessment revealed significant differences, with
the nonVH group performing below the control group ([F2 54 =
5.91, p < .01]; nonVH group vs. control group, p < .01; VH
group vs. control and nonVH groups, p = .17 and p = .19). The
patient groups did not differ in disease duration (t = —1.42,
p = .16), Hoehn and Yahr stage (t = —1.33, p = .19), Unified
Parkinson’s Disease Rating Scale Motor Examination
(t = —1.80, p = .08), or dopamine dose equivalence (t = —1.63,
p =.11) (Table 1).

Table 1. Demographics and Clinical Characteristics of
Patients With Parkinson’s Disease and Healthy Control
Subjects

PD nonVH PD VH

Control Group Group Group
Number 12 25 20
Gender (M:F) 4:8 19:6 15:5
Age, Years 64.75 (5.97) 67.08 (8.22) 68.89 (6.05)
MMSE 20.08 (0.79)  28.39 (1.47)  28.79 (1.72)
MoCA 28.50 (1.45) 26.56 (2.11) 27.41 (1.50)
Disease Duration, Years — 5.52 (2.86) 7.11 (4.99)
Hoehn and Yahr Stage - 2.16 (0.47) 2.37 (0.60)
UPDRS Il — 27.67 (11.54) 34.28 (13.97)

Values are mean (SD) or n.

F, female; M, male; MMSE, Mini-Mental State Examination; MoCA,
Montreal Cognitive Assessment; nonVH, non-visual hallucination; PD,
Parkinson’s disease; UPDRS lll, Unified Parkinson’s Disease Rating
Scale Motor Examination; VH, visual hallucination.
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ANT Behavioral Results

Participants who made no response on more than one-third of
trials were excluded from the study. Trials where no response
was made were omitted from the behavioral and modeling
analyses, rather than using the upper limit reaction time, which
would bias the model. More trials were removed for the VH
group compared with the nonVH group, although patients and
control subjects did not differ significantly ([F2s4 = 4.06,
p < .05]; control group vs. nonVH and VH groups, p = .10 and
p =.09; VH group vs. nonVH group, p < .05).

After removal of no response trials, accuracy was 100%
across the three groups. Reaction times are plotted in Figure 2.
Global reaction times, regardless of condition, were fastest for
the control group followed by the nonVH group and then the
VH group, with significant differences evidenced by a main
effect for group in the analysis of variance ([F21e2 = 8.15,
p < .001]; VH group vs. control and nonVH groups, both
p < .01; nonVH group vs. control group, p = .59). A main effect
of condition revealed that reaction times were significantly
slower for the incongruent condition compared with both the
congruent and the neutral conditions, whereas the congruent
and neutral conductions were equivalent ([Fo162 = 17.02,
p < .000001]; incongruent vs. congruent and neutral, both
p < .00001; congruent vs. neutral, p = .98). There was no sig-
nificant interaction between group and condition, suggesting
that the relatively slowed reaction times for the incongruent
condition were consistent across groups (F4, 162 = 0.04, p =.99).

hDDM Fit

All three models showed good convergence (see Supplement
for R-hat values). The best-fitting model was model three,
which allowed v and a to vary across conditions (DIC model
3 = —636.496, compared with DIC model 1 = —436.160, and
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DIC model 2 = —626.593). Posterior predictive checks showed
good agreement between the simulated and observed data as
shown in Supplemental Figure S1 plotting the observed data
against the model prediction. Comparisons showed that the
difference between the summary statistics of the simulated
and the observed data fell within the 95% credible interval.

Analysis of Model Parameters

Comparisons Between Groups. Figure 3 shows the
posterior probability density plots for the drift rate (top panel)
and decision boundaries (bottom panel) for the three groups
across each condition. The VH group had uniformly lower
drift rates compared with the nonVH group; these differed
significantly in all conditions (neutral, P = 0.05%; incongruent,
P = 0.04%; congruent, P = 3.41%). Drift rates of patients in
the VH group were also significantly lower than for control
subjects for the incongruent and neutral conditions (P =
0.04% and P = 3.43%), although not for the congruent
condition (P = 12.72%). Posterior probabilities did not differ
significantly between nonVH and control groups for any
condition (neutral, P = 84.21%; congruent, P = 66.45%;
incongruent, P = 41.19%).

For the decision boundary, there were no significant differ-
ences between the VH and nonVH groups for any of the
conditions (neutral, P = 31.19%; congruent, P = 50.96%;
incongruent, P = 9.45%). Both the VH and nonVH groups had
significantly larger decision boundaries than the control group
in the neutral and congruent conditions (VH group, P = 0.12%
and P = 0.03%; nonVH group, P = 0.03% and P = 0.03%), and
the nonVH group was also significantly larger in the incon-
gruent condition (nonVH group, P = 0.68%; VH group, P =
14.19%). As shown in Figure 4, the VH and nonVH groups had
similar nondecision times (P = 34.04%), which were
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Figure 2. Attention network task reaction times.
Reaction time distributions for the attention network
task across the three levels of task difficulty. Milli-
seconds are shown on the y axis. Bold black lines
designate the mean reaction times for each condi-
tion, and the dotted line shows the overall mean
across conditions. The filled colored plots show the
density distributions of the reaction times; these are

density plots of the data rotated and mirrored

NonVH
1000 1500

500
]

0
L

symmetrically to show the shape of the data distri-
bution. nonVH, non-visual hallucination; VH, visual
hallucination.

VH
1000 1500

500
]

0
L

T T
neutral congruent

T
incongruent

4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging m 2017; m:m—-m www.sobp.org/BPCNNI

Downloaded for Joachim Raese MD (jraese@gmail.com) at Kaweah Delta Health Care District from ClinicalKey.com by Elsevier on September 25, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.


http://www.sobp.org/BPCNNI

Visual Hallucinations in PD

N w
N
h

Posterior probability density

Biological
Psychiatry:
CNNI

25 30 28
Neutral drift rate

2.54

2.0

N
o
L

1.54

=} 3
! 1

Posterior probability density
o
o

Congruent drift rate

30 35 40

Incongruent drift rate

32 25

0.54

0.04

0.04

25 30 35 40 45 20 25

Neutral decision boundary

20

30

Congruent decision boundary

35 40 45

4 5
Incongruent decision boundary

[ control[Jvh[ | NonvH

Figure 3. Between-group comparisons of drift rates and decision boundaries. Posterior probability density plots for drift rates (top panel) and decision
boundaries (bottom panel). nonVH, non-visual hallucination; VH, visual hallucination.

significantly shorter than the control group (VH group, P =
0.05%; nonVH group, P = 0.00%).

Comparisons Across Conditions. Figure 5 shows pos-
terior probabilities within each group for the three conditions
(control group, left panel; nonVH group, middle panel; VH
group, right panel). For drift rates, the control group showed an
expected pattern with significantly longer drift rates in the
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Figure 4. Nondecision time. Posterior probability density plots for
nondecision time. nonVH, non-visual hallucination; VH, visual hallucination.

incongruent condition compared with the neutral and
congruent conditions (P = 0.28% and P = 0.32%) and similar
rates in the neutral and congruent conditions (P = 50.92%).
The nonVH group showed a similar pattern with significantly
longer drift rates in the incongruent relative to the neutral and
congruent conditions (P = 1.55% and P = 0.15%), with similar
rates in the neutral and congruent conditions (P = 18.31%). In
contrast, compared with the control and nonVH groups, the VH
group showed less of a difference between the incongruent
and neutral conditions (P = 3.28%) and no significant differ-
ence between the incongruent and congruent conditions (P =
17.47%), with similar rates also between neutral and congruent
conditions (P = 17.80%). All groups showed a similar pattern
for decision boundaries across the conditions, with signifi-
cantly larger decision boundaries in the incongruent condition
relative to the neutral and congruent conditions (control group,
P = 0.00% and P = 0.00%; nonVH group, P = 0.00% and
P = 0.00%; VH group, P = 0.00% and P = 0.00%), with similar
thresholds in the neutral and congruent conditions (control
group, P = 38.80%; nonVH group, P = 37.32%; VH group,
P =20.00%).

DISCUSSION

Our results demonstrate two features that characterize the
perceptual decision-making process of hallucinating patients
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relative to nonhallucinating patients: lower drift rates and
reduced ability to adjust drift rates to accommodate changes
in perceptual conflict. Behaviorally, all groups had 100% ac-
curacy on the ANT. Employing a task that patients with PD
could easily understand and execute was particularly impor-
tant, given the possibility of cognitive impairment in this patient
cohort. This ensured that we could accurately access
perceptual decision making without higher-order cognitive
deficits confounding performance. Hallucinating patients had
the slowest reaction times on the ANT, although each group
showed the expected pattern of shorter reaction times for the
easier (neutral and congruent) conditions and longer reaction
times for the more difficult (incongruent) condition. Our find-
ings from the hDDM reveal the added benefits of modeling
these data to uncover the cognitive processes underlying the
behavioral results.

The drift rate reflects how quickly information is accumu-
lated and reflects the quality or precision of evidence that
enters the decision-making process (25). In all three condi-
tions, the control and nonVH groups displayed similar drift
rates. The VH group had consistently lower drift rates. In
between-condition comparisons, drift rates are modulated by
task difficulty (24). This effect was apparent in our results for
both the control and the nonVH groups. These groups had
longer drift rates in the incongruent relative to the congruent

conditions, suggesting that their integration of information into
the decision-making process was flexibly modulated in
response to imprecise or ambiguous sensory evidence. In
contrast, the VH group had similar drift rates across the
congruent and incongruent conditions, indicating less flexible
context-dependent modulation of sensory accumulation.
Previous work has identified neural correlates of evidence
accumulation during perceptual decision making. In monkeys,
neuronal populations in sensory areas (e.g., middle temporal
visual area) fire in response to properties of a stimulus, and
downstream regions (e.g., lateral intraparietal, frontal eye
fields, dorsal lateral prefrontal cortex) integrate this information
over time until sufficient evidence is accumulated for a deci-
sion (39-42). In humans, evidence accumulation has been
related to frontoparietal regions [i.e., dorsal and ventrolateral
prefrontal cortex and frontal eye fields (43-46)] and the anterior
insula (47) as well as integration across large-scale networks
(48). In PD, abnormal local and network-level engagement of
frontoparietal and insula regions has been found in patients
with hallucinations (49-52) and is typically equated with
attentional dysfunction. In perceptual decision making, accu-
mulation of sensory evidence and attention are highly
collinear—and possibly inseparable—processes (23), consis-
tent with the relationship between attention and sensory pre-
cision specified by predictive coding accounts. It follows that
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our finding of impaired drift rates may offer a more tangible,
computational framework to better specify attentional impair-
ments in patients with PD with VHs.

All groups modulated their decision boundaries in response
to the more difficult condition, displaying larger boundaries for
the incongruent relative to congruent and neutral conditions.
Flexible adaptation of decision thresholds in response to task
demands has been shown previously in patients with PD
(28,29). Despite the flexible adaptation of thresholds, regard-
less of hallucination status, patients with PD had larger deci-
sion boundaries than control subjects. The lack of difference
between the VH and nonVH groups suggests that a widening
of decision boundaries during perceptual decision making is a
feature of PD more generally. This corresponds to findings in
healthy aging, where older adults display wider decision
boundaries relative to younger adults (53-55). In older adults,
adopting conservative decision criteria is presumed to be a
compensatory strategy to prevent errors in speed and/or ac-
curacy tradeoff tasks, and this effect may be amplified in PD.

Hallucinating and nonhallucinating patients also had com-
parable nondecision times, and these were shorter than times
for control subjects. This might have seemed counterintuitive
in light of the longer nondecision times shown in aging (56,57),
but reduced nondecision times in PD have also been found
with the application of an hDDM to a saccadic go/no-go task
(80). Nondecision time encompasses diverse processes:
encoding evidence from a stimulus and extracting its di-
mensions to guide the decision-making process and execution
of a motor response (36). Decreased latencies in stimulus
encoding and extraction of details may drive this finding, or
shorter nondecision times may reflect motor impulsivity, which
has previously been documented in PD despite general motor
slowing (58,59). Future work may make this distinction in PD,
although currently nondecision time is a relatively under-
specified term compared with the other parameters in the
DDM, and few studies have successfully separated its sub-
components (23).

Inefficient and less flexible evidence accumulation during
perceptual decision making emerges as a unique feature of
hallucinating patients with PD, whereas changes in cautious-
ness and visuomotor processes are apparent regardless of
hallucinator status. Longer drift rate latencies lead to slower
decisions, and because perceptual decision making is a noisy
process, this increases the chance of errors (37,60). In hallu-
cinating patients with PD, low drift rates that are invariant to
changing environmental demands would be a source of low-
quality or imprecise information entering the perceptual
process.

In terms of aberrant precision control in hallucinating pa-
tients with PD, our results are consistent with the simulations
reported by Adams et al. (12), namely, an imbalance between
sensory precision and the precision of top-down prior beliefs.
In PD, there is degeneration of ascending gain-setting neuro-
modulatory systems (i.e., dopaminergic, cholinergic, and
noradrenergic) (61,62) that are associated with implementing
precision. Aberrant precision control may be an important
unifying principal across PD symptoms. For example, motor
symptoms (in particular bradykinesia) may speak to failures in
the estimation and attenuation of proprioceptive and somato-
sensory uncertainty. In active inference accounts, estimating
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sensory uncertainty is crucial for initiating movement, as the
goal of movement is to reduce the discrepancy between pre-
dicted and actual sensory inputs (63,64). Failures of sensory
attenuation and compensatory increases in the precision and/
or gain at higher levels of processing may underlie both the
false inference in VHs and the failure to realize predicted
movements in the proprioceptive domain.

Aberrant precision control is ultimately reflected as a failure
of Bayesian inference (11,13,65). In a Bayesian framework for
perception, sensory input (likelihood) is integrated with known
statistics about the environment (priors), forming an estimate
of the external stimulus (the posterior). Contributions of the
likelihood and prior in generating the posterior estimate are
weighted in accordance with their certainty. Noisy or imprecise
sensory input is uncertain and carries less weight, shifting the
balance in favor of priors. In this context, perception is
vulnerable to excessive influence from internally generated
beliefs and expectations. In PD, if visual information is accu-
mulated slowly and inefficiently and is therefore less informa-
tive, this may contribute to the down weighting of bottom-up
information in favor of top-down information.

While the Bayesian framework is a compelling description of
hallucinations, it does not necessarily favor a single mechanistic
explanation (66). For example, both aberrant predictive coding
across hierarchal brain circuitry (67) and large-scale disruptions
in the excitatory-to-inhibitory tone of the brain (68) accommo-
date a Bayesian formulation of hallucinations. Reconciling
computational descriptions of hallucinations with a mechanistic
framework will open important therapeutic avenues, as pre-
dictive coding and excitatory-to-inhibitory accounts rely on
distinct neuromodulatory and neurotransmitter profiles. In PD,
we are beginning to uncover the psychological and neural sig-
natures associated with a bottom-up versus top-down imbal-
ance in perception. Along with the results of the current study
and evidence of lower-level deficits in attention and visual
processing, previous work has identified overactivity in the
default network of patients with PD with hallucinations (69) and
increased coupling between the default network and visual
cortex (50). Given the role of the default network in construction
of mental imagery (70) and its positioning as a transmodal
system distinct from unimodal sensory regions (71), over-
engagement of the default network during visual perception
may be a source of excessive top-down influence.

Hallucinations develop progressively in PD, beginning with
minor illusions before complex hallucinations emerge (4). Pa-
tients initially retain full insight into these symptoms, appreci-
ating their occurrence as part of the disease process. With
disease progression and cognitive decline, patients can lose
insight and develop delusional ideas around the hallucinations.
Delusions themselves can be viewed as the instantiation of
new priors, to accommodate increasingly noisy or imprecise
sensory input (11,72). We employed a limited assessment of
hallucinations. Future studies may want to stratify patients in
more detail based on the severity and phenomenology of their
hallucinations to determine how the imbalance between top-
down versus bottom-up influence evolves over the disease
course. Additionally, we chose a task manageable for patients
with PD; nevertheless, lower-level visual deficits could render
such a task more challenging. Future work should employ
more detailed visual testing to determine the influence of
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low-level vision on sensory evidence accumulation, and repli-
cating the current findings in other perceptual decision-making
tasks will be important.

In conclusion, our results suggest that impaired drift rate
can be used to approximate precision, providing a novel
computational framework encompassing the sensory pro-
cessing and lower-level attentional deficits previously
described in individuals with VHs. Alterations in the dynamic
process of sensory evidence accumulation may therefore be a
valuable marker to exploit in future explanatory and therapeutic
studies of PD VHs.
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